RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2014, Volume 14, Number 1, Pages 121–160 (Mi mmj517)  

This article is cited in 11 scientific papers (total in 11 papers)

The boundary of the Gelfand–Tsetlin graph: new proof of Borodin–Olshanski's formula, and its $q$-analogue

Leonid Petrovab

a Dobrushin Mathematics Laboratory, Kharkevich Institute for Information Transmission Problems, Moscow, Russia
b Department of Mathematics, Northeastern University, 360 Huntington ave., Boston, MA 02115, USA

Abstract: In their recent paper, Borodin and Olshanski have presented a novel proof of the celebrated Edrei–Voiculescu theorem which describes the boundary of the Gelfand–Tsetlin graph as a region in an infinite-dimensional coordinate space. This graph encodes branching of irreducible characters of finite-dimensional unitary groups. Points of the boundary of the Gelfand–Tsetlin graph can be identified with finite indecomposable (= extreme) characters of the infinite-dimensional unitary group. An equivalent description identifies the boundary with the set of doubly infinite totally nonnegative sequences.
A principal ingredient of Borodin–Olshanski's proof is a new explicit determinantal formula for the number of semi-standard Young tableaux of a given skew shape (or of Gelfand–Tsetlin schemes of trapezoidal shape). We present a simpler and more direct derivation of that formula using the Cauchy–Binet summation involving the inverse Vandermonde matrix. We also obtain a $q$-generalization of that formula, namely, a new explicit determinantal formula for arbitrary $q$-specializations of skew Schur polynomials. Its particular case is related to the $q$-Gelfand–Tsetlin graph and $q$-Toeplitz matrices introduced and studied by Gorin.

Key words and phrases: Gelfand–Tsetlin graph, trapezoidal Gelfand–Tsetlin schemes, Edrei–Voiculescu theorem, inverse Vandermonde matrix, $q$-deformation, skew Schur polynomials.

DOI: https://doi.org/10.17323/1609-4514-2014-14-1-121-160

Full text: http://www.mathjournals.org/.../2014-014-001-006.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 05E10, 22E66, 31C35, 46L65
Received: September 17, 2012
Language:

Citation: Leonid Petrov, “The boundary of the Gelfand–Tsetlin graph: new proof of Borodin–Olshanski's formula, and its $q$-analogue”, Mosc. Math. J., 14:1 (2014), 121–160

Citation in format AMSBIB
\Bibitem{Pet14}
\by Leonid~Petrov
\paper The boundary of the Gelfand--Tsetlin graph: new proof of Borodin--Olshanski's formula, and its $q$-analogue
\jour Mosc. Math.~J.
\yr 2014
\vol 14
\issue 1
\pages 121--160
\mathnet{http://mi.mathnet.ru/mmj517}
\crossref{https://doi.org/10.17323/1609-4514-2014-14-1-121-160}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3221949}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000342789200006}


Linking options:
  • http://mi.mathnet.ru/eng/mmj517
  • http://mi.mathnet.ru/eng/mmj/v14/i1/p121

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. I. Olshanskii, “Approximation of Markov Dynamics on the Dual Object of the Infinite-Dimensional Unitary Group”, Funct. Anal. Appl., 49:4 (2015), 289–300  mathnet  crossref  crossref  isi  elib
    2. V. Gorin, G. Panova, “Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory”, Ann. Probab., 43:6 (2015), 3052–3132  crossref  mathscinet  zmath  isi  elib  scopus
    3. A. Bufetov, L. Petrov, “Law of large numbers for infinite random matrices over a finite field”, Selecta Math. (N.S.), 21:4 (2015), 1271–1338  crossref  mathscinet  zmath  isi  elib  scopus
    4. A. Bufetov, V. Gorin, “Representations of classical Lie groups and quantized free convolution”, Geom. Funct. Anal., 25:3 (2015), 763–814  crossref  mathscinet  zmath  isi  elib  scopus
    5. M. Ciucu, I. Fischer, “Lozenge tilings of hexagons with arbitrary dents”, Adv. in Appl. Math., 73 (2016), 1–22  crossref  mathscinet  zmath  isi  elib  scopus
    6. V. Gorin, G. Olshanski, “A quantization of the harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 270:1 (2016), 375–418  crossref  mathscinet  zmath  isi  elib  scopus
    7. G. I. Olshanskii, “Extended Gelfand–Tsetlin Graph, Its $q$-Boundary, and $q$-B-Splines”, Funct. Anal. Appl., 50:2 (2016), 107–130  mathnet  crossref  crossref  mathscinet  isi  elib
    8. G. Olshanski, “The representation ring of the unitary groups and Markov processes of algebraic origin”, Adv. Math., 300 (2016), 544–615  crossref  mathscinet  zmath  isi  scopus
    9. G. Olshanski, “Markov dynamics on the dual object to the infinite-dimensional unitary group”, Probability and statistical physics in St. Petersburg, Proc. Sympos. Pure Math., 91, Amer. Math. Soc., Providence, RI, 2016, 373–394  crossref  mathscinet  isi
    10. S. Mkrtchyan, L. Petrov, “GUE corners limit of $q$-distributed lozenge tilings”, Electron. J. Probab., 22 (2017), 101  crossref  mathscinet  zmath  isi  scopus
    11. C. Cuenca, “Pieri integral formula and asymptotics of Jack unitary characters”, Sel. Math.-New Ser., 24:3 (2018), 2737–2789  crossref  mathscinet  zmath  isi  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:117
    References:43

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020