General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Mosc. Math. J.:

Personal entry:
Save password
Forgotten password?

Mosc. Math. J., 2014, Volume 14, Number 2, Pages 339–365 (Mi mmj525)  

This article is cited in 13 scientific papers (total in 13 papers)

Physical measures for nonlinear random walks on interval

V. Kleptsyna, D. Volkbc

a CNRS, Institut de Recherche Mathematique de Rennes (IRMAR, UMR 6625 CNRS)
b University of Rome "Tor Vergata"
c Institute for Information Transmission Problems, Russian Academy of Sciences

Abstract: A one-dimensional confined Nonlinear Random Walk is a tuple of $N$ diffeomorphisms of the unit interval driven by a probabilistic Markov chain. For generic such walks, we obtain a geometric characterization of their ergodic stationary measures and prove that all of them have negative Lyapunov exponents.
These measures appear to be probabilistic manifestations of physical measures for certain deterministic dynamical systems. These systems are step skew products over transitive subshifts of finite type (topological Markov chains) with the unit interval fiber.
For such skew products, we show there exist only finite collection of alternating attractors and repellers; we also give a sharp upper bound for their number. Each of them is a graph of a continuous map from the base to the fiber defined almost everywhere w.r.t. any ergodic Markov measure in the base. The orbits starting between the adjacent attractor and repeller tend to the attractor as $t\to+\infty$, and to the repeller as $t\to-\infty$. The attractors support ergodic hyperbolic physical measures.

Key words and phrases: random walks, stationary measures, dynamical systems, attractors, partial hyperbolicity, skew products.


Full text:
References: PDF file   HTML file

Bibliographic databases:

MSC: Primary 82B41, 82C41, 60G50; Secondary 37C05, 37C20, 37C70, 37D45
Received: July 7, 2013

Citation: V. Kleptsyn, D. Volk, “Physical measures for nonlinear random walks on interval”, Mosc. Math. J., 14:2 (2014), 339–365

Citation in format AMSBIB
\by V.~Kleptsyn, D.~Volk
\paper Physical measures for nonlinear random walks on interval
\jour Mosc. Math.~J.
\yr 2014
\vol 14
\issue 2
\pages 339--365

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. Shinohara, “On the minimality of semigroup actions on the interval which are $C^1$-close to the identity”, Proc. London Math. Soc., 109:5 (2014), 1175–1202  crossref  mathscinet  zmath  isi  elib  scopus
    2. V. Kleptsyn, D. Volk, “Nonwandering sets of interval skew products”, Nonlinearity, 27:7 (2014), 1595–1601  crossref  mathscinet  isi  elib  scopus
    3. M. Gharaei, A. J. Homburg, “Skew products of interval maps over subshifts”, J. Difference Equ. Appl., 22:7 (2016), 941–958  crossref  mathscinet  isi  scopus
    4. A. Okunev, “Milnor attractors of skew products with the fiber a circle”, J. Dyn. Control Syst., 23:2 (2017), 421–433  crossref  mathscinet  zmath  isi  scopus
    5. M. Gharaei, A. J. Homburg, “Random interval diffeomorphisms”, Discrete Contin. Dyn. Syst. Ser. S, 10:2 (2017), 241–272  crossref  mathscinet  zmath  isi  scopus
    6. J. de Simoi, C. Liverani, Ch. Poquet, D. Volk, “Fast-slow partially hyperbolic systems versus Freidlin–Wentzell random systems”, J. Stat. Phys., 166:3-4 (2017), 650–679  crossref  mathscinet  zmath  isi  scopus
    7. A. V. Okunev, I. S. Shilin, “On the attractors of step skew products over the Bernoulli shift”, Proc. Steklov Inst. Math., 297 (2017), 235–253  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    8. L. J. Diaz, K. Gelfert, M. Rams, “Nonhyperbolic step skew-products: ergodic approximation”, Ann. Inst. Henri Poincare-Anal. Non Lineaire, 34:6 (2017), 1561–1598  crossref  mathscinet  zmath  isi  scopus
    9. Yu. Ilyashenko, I. Shilin, “Attractors and skew products”, Modern Theory of Dynamical Systems: a Tribute to Dmitry Victorovich Anosov, Contemporary Mathematics, 692, eds. A. Katok, Y. Pesin, F. Hertz, Amer. Math. Soc., 2017, 155–175  crossref  mathscinet  zmath  isi  scopus
    10. A. J. Homburg, “Synchronization in minimal iterated function systems on compact manifolds”, Bull. Braz. Math. Soc., 49:3 (2018), 615–635  crossref  mathscinet  zmath  isi  scopus
    11. C. P. Walkden, T. Withers, “Invariant graphs of a family of non-uniformly expanding skew products over Markov maps”, Nonlinearity, 31:6 (2018), 2726–2755  crossref  mathscinet  zmath  isi  scopus
    12. M. Zaj, A. Fakhari, F. H. Ghane, A. Ehsani, “Physical measures for certain class of non-uniformly hyperbolic endomorphisms on the solid torus”, Discret. Contin. Dyn. Syst., 38:4 (2018), 1777–1807  crossref  mathscinet  zmath  isi  scopus
    13. L. J. Diaz, E. Matias, “Stability of the Markov operator and synchronization of Markovian random products”, Nonlinearity, 31:4 (2018), 1782–1806  crossref  mathscinet  zmath  isi  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:191

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019