RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2015, Volume 15, Number 2, Pages 373–396 (Mi mmj564)  

This article is cited in 13 scientific papers (total in 13 papers)

Pivotal fusion categories of rank 3

Victor Ostrik

Department of Mathematics, University of Oregon, Eugene, OR 97403, USA

Abstract: We classify all fusion categories of rank 3 that admit a pivotal structure over an algebraically closed field of characteristic zero.

Key words and phrases: tensor categories, fusion categories.

DOI: https://doi.org/10.17323/1609-4514-2015-15-2-373-396

Full text: http://www.mathjournals.org/.../2015-015-002-011.html
References: PDF file   HTML file

Bibliographic databases:

MSC: Primary 18D10; Secondary 16W30
Received: May 21, 2014
Language:

Citation: Victor Ostrik, “Pivotal fusion categories of rank 3”, Mosc. Math. J., 15:2 (2015), 373–396

Citation in format AMSBIB
\Bibitem{Ost15}
\by Victor~Ostrik
\paper Pivotal fusion categories of rank~3
\jour Mosc. Math.~J.
\yr 2015
\vol 15
\issue 2
\pages 373--396
\mathnet{http://mi.mathnet.ru/mmj564}
\crossref{https://doi.org/10.17323/1609-4514-2015-15-2-373-396}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3427429}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000361607300011}


Linking options:
  • http://mi.mathnet.ru/eng/mmj564
  • http://mi.mathnet.ru/eng/mmj/v15/i2/p373

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. Burciu, “On an analogue of a Brauer theorem for fusion categories”, Monatsh. Math., 181:3 (2016), 561–575  crossref  mathscinet  zmath  isi  scopus
    2. B. Bartlett, “Fusion categories via string diagrams”, Commun. Contemp. Math., 18:5 (2016), 1550080, 39 pp.  crossref  mathscinet  zmath  isi  scopus
    3. M. Bischoff, “A remark on CFT realization of quantum doubles of subfactors: case index $<4$”, Lett. Math. Phys., 106:3 (2016), 341–363  crossref  mathscinet  zmath  isi  scopus
    4. P. Bruillard, “Rank 4 premodular categories”, New York J. Math., 22 (2016), 775–800  mathscinet  zmath  isi
    5. K. Shimizu, “The monoidal center and the character algebra”, J. Pure Appl. Algebra, 221:9 (2017), 2338–2371  crossref  mathscinet  zmath  isi  scopus
    6. Zh. H. Wang, L. B. Li, “On realization of fusion rings from generalized Cartan matrices”, Acta Math. Sin. (Engl. Ser.), 33:3 (2017), 362–376  crossref  mathscinet  zmath  isi  scopus
    7. T. Deshpande, “Modular categories, crossed S-matrices, and Shintani descent”, Int. Math. Res. Not. IMRN, 2017, no. 4, 967–999  crossref  mathscinet  isi  scopus
    8. C. Negron, S.-H. Ng, “Gauge invariants from the powers of antipodes”, Pac. J. Math., 291:2 (2017), 439–460  crossref  mathscinet  zmath  isi  scopus
    9. T. Gannon, S. Morrison, “Modular data for the extended Haagerup subfactor”, Commun. Math. Phys., 356:3 (2017), 981–1015  crossref  mathscinet  zmath  isi  scopus
    10. A. Schopieray, “Classification of $\mathfrak{sl}_3$ relations in the Witt group of nondegenerate braided fusion categories”, Commun. Math. Phys., 353:3 (2017), 1103–1127  crossref  mathscinet  zmath  isi  scopus
    11. Ch. Yuan, R. Zhao, L. Li, “Irreducible $\mathbb {Z}_+$-modules of near-group fusion ring $K(\mathbb{Z}_3, 3)$”, Front. Math. China, 13:4 (2018), 947–966  crossref  mathscinet  zmath  isi  scopus
    12. L. Bhardwaj, Yu. Tachikawa, “On finite symmetries and their gauging in two dimensions”, J. High Energy Phys., 2018, no. 3, 189  crossref  mathscinet  zmath  isi  scopus
    13. M. Izumi, “The classification of $3^n$ subfactors and related fusion categories”, Quantum Topol., 9:3 (2018), 473–562  crossref  mathscinet  zmath  isi  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:128
    References:31

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020