RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2015, Volume 15, Number 3, Pages 511–526 (Mi mmj573)  

This article is cited in 1 scientific paper (total in 1 paper)

On the basis property of the root functions of Sturm–Liouville operators with general regular boundary conditions

Cemile Nur, O. A. Veliev

Department of Mathematics, Dogus University, Kadiköy, Istanbul, Turkey

Abstract: We obtain the asymptotic formulas for the eigenvalues and eigenfunctions of the Sturm–Liouville operators with general regular boundary conditions. Using these formulas, we find sufficient conditions on the potential $q$ such that the root functions of these operators do not form a Riesz basis.

Key words and phrases: asymptotic formulas, regular boundary conditions, Riesz basis.

DOI: https://doi.org/10.17323/1609-4514-2015-15-3-511-526

Full text: http://www.mathjournals.org/.../2015-015-003-006.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 34L05, 34L20
Received: June 14, 2013; in revised form December 3, 2014
Language:

Citation: Cemile Nur, O. A. Veliev, “On the basis property of the root functions of Sturm–Liouville operators with general regular boundary conditions”, Mosc. Math. J., 15:3 (2015), 511–526

Citation in format AMSBIB
\Bibitem{NurVel15}
\by Cemile~Nur, O.~A.~Veliev
\paper On the basis property of the root functions of Sturm--Liouville operators with general regular boundary conditions
\jour Mosc. Math.~J.
\yr 2015
\vol 15
\issue 3
\pages 511--526
\mathnet{http://mi.mathnet.ru/mmj573}
\crossref{https://doi.org/10.17323/1609-4514-2015-15-3-511-526}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3427437}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000365392600006}


Linking options:
  • http://mi.mathnet.ru/eng/mmj573
  • http://mi.mathnet.ru/eng/mmj/v15/i3/p511

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. T. Sugiyama, “The moduli space of polynomial maps and their fixed-point multipliers”, Adv. Math., 322 (2017), 132–185  crossref  mathscinet  zmath  isi  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:124
    References:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020