RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2015, Volume 15, Number 4, Pages 833–846 (Mi mmj590)  

This article is cited in 4 scientific papers (total in 4 papers)

Global current algebras and localization on Riemann surfaces

Oleg K. Sheinman

Department of Geometry and Topology, Steklov Mathematical Institute, Moscow

Abstract: In the present article, certain new Lie algebras of algebraic-geometrical nature, and their relations with the theory of finite-dimensional integrable systems are described.

Key words and phrases: Lax operator algebra, semisimple Lie algebra, Lax equation, grading, Hamiltonian theory.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.


DOI: https://doi.org/10.17323/1609-4514-2015-15-4-833-846

Full text: http://www.mathjournals.org/.../2015-015-004-016.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 17Bxx, 81R10, 81R12
Received: February 12, 2015; in revised form August 7, 2015
Language:

Citation: Oleg K. Sheinman, “Global current algebras and localization on Riemann surfaces”, Mosc. Math. J., 15:4 (2015), 833–846

Citation in format AMSBIB
\Bibitem{She15}
\by Oleg K.~Sheinman
\paper Global current algebras and localization on Riemann surfaces
\jour Mosc. Math.~J.
\yr 2015
\vol 15
\issue 4
\pages 833--846
\mathnet{http://mi.mathnet.ru/mmj590}
\crossref{https://doi.org/10.17323/1609-4514-2015-15-4-833-846}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3438837}
\zmath{https://zbmath.org/?q=an:06576750}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000368530900016}
\elib{http://elibrary.ru/item.asp?id=26856427}


Linking options:
  • http://mi.mathnet.ru/eng/mmj590
  • http://mi.mathnet.ru/eng/mmj/v15/i4/p833

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. K. Sheinman, “Lax operator algebras and integrable systems”, Russian Math. Surveys, 71:1 (2016), 109–156  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. O. K. Sheinman, “Matrix divisors on Riemann surfaces and Lax operator algebras”, Trans. Moscow Math. Soc., 78 (2017), 109–121  mathnet  crossref  elib
    3. Elena Yu. Bunkova, “Hirzebruch functional equation: classification of solutions”, Proc. Steklov Inst. Math., 302 (2018), 33–47  mathnet  crossref  crossref  isi  elib
    4. O. K. Sheinman, “Certain Reductions of Hitchin Systems of Rank 2 and Genera 2 and 3”, Dokl. Math., 97:2 (2018), 144–146  mathnet  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
  • Moscow Mathematical Journal
    Number of views:
    This page:156
    References:49

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019