RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2016, Volume 16, Number 1, Pages 45–93 (Mi mmj594)  

This article is cited in 3 scientific papers (total in 3 papers)

An analogue of the Brauer–Siegel theorem for abelian varieties in positive characteristic

Marc Hindrya, Amílcar Pachecob

a Université Paris Diderot, Institut de Mathématiques de Jussieu, UFR de Mathématiques, bâtiment Sophie Germain, 5 rue Thomas Mann, 75205 Paris Cedex 13, France
b Universidade Federal do Rio de Janeiro, Instituto de Matemática. Rua Alzira Brandão 355/404, Tijuca, 20550-035 Rio de Janeiro, RJ, Brasil

Abstract: Consider a family of abelian varieties $A_i$ of fixed dimension defined over the function field of a curve over a finite field. We assume finiteness of the Shafarevich–Tate group of $A_i$. We ask then when does the product of the order of the Shafarevich–Tate group by the regulator of $A_i$ behave asymptotically like the exponential height of the abelian variety. We give examples of families of abelian varieties for which this analogue of the Brauer–Siegel theorem can be proved unconditionally, but also hint at other situations, where the behaviour is different. We also prove interesting inequalities between the degree of the conductor, the height and the number of components of the Néron model of an abelian variety.

Key words and phrases: abelian varieties, global fields, function fields, $L$-function, Birch and Swinnerton-Dyer conjecture, heights, torsion points, Néron models, Brauer–Siegel theorem.

Funding Agency Grant Number
ANR HAMOT
National Council for Scientific and Technological Development (CNPq) 300419/2009-0
201663/2011-2
Centre National de la Recherche Scientifique
Paris Science Foundation
Marc Hindry was supported in part by the ANR HAMOT; Amílcar Pacheco was supported in part by CNPq research grant number 300419/2009-0, CNPq senior grant 201663/2011-2, Poste Rouge CNRS and Paris Science Foundation.


DOI: https://doi.org/10.17323/1609-4514-2016-16-1-45-93

Full text: http://www.mathjournals.org/.../2016-016-001-003.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 11G05, 11G10, 11G40, 11G50, 11R58, 14G10, 14G25, 14G40, 14K15
Received: April 2, 2014; in revised form July 4, 2015
Language:

Citation: Marc Hindry, Amílcar Pacheco, “An analogue of the Brauer–Siegel theorem for abelian varieties in positive characteristic”, Mosc. Math. J., 16:1 (2016), 45–93

Citation in format AMSBIB
\Bibitem{HinPac16}
\by Marc~Hindry, Am{\'\i}lcar~Pacheco
\paper An analogue of the Brauer--Siegel theorem for abelian varieties in positive characteristic
\jour Mosc. Math.~J.
\yr 2016
\vol 16
\issue 1
\pages 45--93
\mathnet{http://mi.mathnet.ru/mmj594}
\crossref{https://doi.org/10.17323/1609-4514-2016-16-1-45-93}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3470576}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000386360200003}


Linking options:
  • http://mi.mathnet.ru/eng/mmj594
  • http://mi.mathnet.ru/eng/mmj/v16/i1/p45

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. Griffon, “Analogue of the Brauer-Siegel theorem for Legendre elliptic curves”, J. Number Theory, 193 (2018), 189–212  crossref  mathscinet  zmath  isi  scopus
    2. R. Griffon, “A Brauer-Siegel theorem for Fermat surfaces over finite fields”, J. Lond. Math. Soc.-Second Ser., 97:3 (2018), 523–549  crossref  mathscinet  zmath  isi  scopus
    3. R. Griffon, “Explicit $L$-functions and a Brauer-Siegel theorem for Hessian elliptic curves”, J. Theor. Nr. Bordx., 30:3 (2018), 1059–1084  crossref  mathscinet  zmath  isi
  • Moscow Mathematical Journal
    Number of views:
    This page:95
    References:27

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020