RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2016, Volume 16, Number 1, Pages 179–200 (Mi mmj597)  

A uniform coerciveness result for biharmonic operator and its application to a parabolic equation

Kazushi Yoshitomi

Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Minamiohsawa 1-1, Hachioji, Tokyo 192-0397, Japan

Abstract: We establish an $L^2$ a priori estimate for solutions to the problem: $\Delta^2u=f$ in $\Omega$, $\frac{\partial u}{\partial n}=0$ on $\partial\Omega$, $-\frac{\partial}{\partial n}(\Delta u)+\beta\alpha u=0$ on $\partial\Omega$, where $n$ is the outward unit normal vector to $\partial\Omega$, $\alpha$ is a positive function on $\partial\Omega$ and $\beta$ is a nonnegative parameter. Our estimate is stable under the singular limit $\beta\to\infty$ and cannot be absorbed into the results of S. Agmon, A. Douglis and L. Nirenberg. We apply the estimate to the analysis of the large-time limit of a solution to the equation $(\frac{\partial}{\partial t}+\Delta^2)u(x,t)=f(x,t)$ in an asymptotically cylindrical domain $D$, where we impose a boundary condition similar to that above and the coefficient of $u$ in the boundary condition is supposed to tend to $+\infty$ as $t\to\infty$.

Key words and phrases: biharmonic operator, singular perturbation, parabolic equation, stabilization.

DOI: https://doi.org/10.17323/1609-4514-2016-16-1-179-200

Full text: http://www.mathjournals.org/.../2016-016-001-006.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 35J35, 35J40, 35K35
Received: October 31, 2013; in revised form January 23, 2015
Language:

Citation: Kazushi Yoshitomi, “A uniform coerciveness result for biharmonic operator and its application to a parabolic equation”, Mosc. Math. J., 16:1 (2016), 179–200

Citation in format AMSBIB
\Bibitem{Yos16}
\by Kazushi~Yoshitomi
\paper A uniform coerciveness result for biharmonic operator and its application to a~parabolic equation
\jour Mosc. Math.~J.
\yr 2016
\vol 16
\issue 1
\pages 179--200
\mathnet{http://mi.mathnet.ru/mmj597}
\crossref{https://doi.org/10.17323/1609-4514-2016-16-1-179-200}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3470579}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000336402400008}


Linking options:
  • http://mi.mathnet.ru/eng/mmj597
  • http://mi.mathnet.ru/eng/mmj/v16/i1/p179

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Moscow Mathematical Journal
    Number of views:
    This page:89
    References:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020