RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2016, Volume 16, Number 4, Pages 603–619 (Mi mmj611)  

This article is cited in 1 scientific paper (total in 1 paper)

Morava $K$-theory rings of the extensions of $C_2$ by the products of cyclic $2$-groups

Malkhaz Bakuradze, Natia Gachechiladze

Iv. Javakhishvili Tbilisi State University, Faculty of Exact and Natural Sciences

Abstract: In 2011, Schuster proved that $\mod2$ Morava $K$-theory $K(s)^*(BG)$ is evenly generated for all groups $G$ of order $32$. There exist $51$ non-isomorphic groups of order $32$. In a monograph by Hall and Senior, these groups are numbered by $1,…,51$. For the groups $G_{38},…,G_{41}$, which fit in the title, the explicit ring structure is determined in a joint work of M. Jibladze and the author. In particular, $K(s)^*(BG)$ is the quotient of a polynomial ring in 6 variables over $K(s)^*(\mathrm{pt})$ by an ideal generated by explicit polynomials. In this article we present some calculations using the same arguments in combination with a theorem by the author on good groups in the sense of Hopkins–Kuhn–Ravenel. In particular, we consider the groups $G_{36},G_{37}$, each isomorphic to a semidirect product $(C_4\times C_2\times C_2)\rtimes C_2$, the group $G_{34}\cong(C_4\times C_4)\rtimes C_2$ and its non-split version $G_{35}$. For these groups the action of $C_2$ is diagonal, i.e., simpler than for the groups $G_{38},…,G_{41}$, however the rings $K(s)^*(BG)$ have the same complexity.

Key words and phrases: transfer, Morava $K$-theory.

Funding Agency Grant Number
Volkswagen Foundation 1/84 328
Shota Rustaveli National Science Foundation DI/16/5-103/12
The first named author was supported by Volkswagen Foundation, Ref. 1/84 328 and Rustaveli Foundation grant DI/16/5-103/12.


DOI: https://doi.org/10.17323/1609-4514-2016-16-4-603-619

Full text: http://www.mathjournals.org/.../2016-016-004-001.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 55N20, 55R12, 55R40
Received: December 22, 2014; in revised form February 8, 2016
Language:

Citation: Malkhaz Bakuradze, Natia Gachechiladze, “Morava $K$-theory rings of the extensions of $C_2$ by the products of cyclic $2$-groups”, Mosc. Math. J., 16:4 (2016), 603–619

Citation in format AMSBIB
\Bibitem{BakGac16}
\by Malkhaz~Bakuradze, Natia~Gachechiladze
\paper Morava $K$-theory rings of the extensions of $C_2$ by the products of cyclic $2$-groups
\jour Mosc. Math.~J.
\yr 2016
\vol 16
\issue 4
\pages 603--619
\mathnet{http://mi.mathnet.ru/mmj611}
\crossref{https://doi.org/10.17323/1609-4514-2016-16-4-603-619}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3598497}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000391211000001}


Linking options:
  • http://mi.mathnet.ru/eng/mmj611
  • http://mi.mathnet.ru/eng/mmj/v16/i4/p603

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. Bakuradze, N. Gachechiladze, “Some 2-groups from the view of Hilbert–Poincaré polynomials of $K(2)^*(BG)$”, Tbil. Math. J., 10:2 (2017), 103–110  crossref  mathscinet  zmath  isi
  • Moscow Mathematical Journal
    Number of views:
    This page:82
    References:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020