RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2017, Volume 17, Number 2, Pages 291–321 (Mi mmj638)  

Deformations of the Hilbert scheme of points on a del Pezzo surface

Chunyi Li

School of Mathematics and Maxwell Institute, University of Edinburgh

Abstract: Let $S$ be a smooth del Pezzo surface over $\mathbb C$ of degree $d$ and $\mathrm{Hilb}^nS$ be the Hilbert scheme that parameterizes $0$-dimensional subschemes of length $n$. In this paper, we construct a flat family of deformations of $\mathrm{Hilb}^nS$ which can be conceptually understood as the Hilbert scheme of deformed non-commutative del Pezzo surfaces. Further we show that each deformed $\mathrm{Hilb}^nS$ carries a generically symplectic holomorphic Poisson structure. Moreover, the generic deformation of $\mathrm{Hilb}^nS$ has an $(11-d)$-dimensional moduli space and each of the fibers is of the form that we construct.

Key words and phrases: Hilbert scheme, exceptional collection, geometric invariant theory, holomorphic Poisson structure.

Full text: http://www.mathjournals.org/.../2017-017-002-006.html
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
MSC: 14D20, 16E35
Received: July 29, 2014; in revised form January 20, 2016
Language: English

Citation: Chunyi Li, “Deformations of the Hilbert scheme of points on a del Pezzo surface”, Mosc. Math. J., 17:2 (2017), 291–321

Citation in format AMSBIB
\Bibitem{Li17}
\by Chunyi~Li
\paper Deformations of the Hilbert scheme of points on a~del Pezzo surface
\jour Mosc. Math.~J.
\yr 2017
\vol 17
\issue 2
\pages 291--321
\mathnet{http://mi.mathnet.ru/mmj638}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3669875}


Linking options:
  • http://mi.mathnet.ru/eng/mmj638
  • http://mi.mathnet.ru/eng/mmj/v17/i2/p291

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Moscow Mathematical Journal
    Number of views:
    This page:50
    References:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019