RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2017, Volume 17, Number 4, Pages 635–666 (Mi mmj651)  

Cherednik and Hecke algebras of varieties with a finite group action

Pavel Etingof

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract: Let $G$ be a finite group of linear transformations of a finite dimensional complex vector space $V$. To this data one can attach a family of algebras $H_{t,c}(V,G)$, parametrized by complex numbers $t$ and conjugation invariant functions $c$ on the set of complex reflections in $G$, which are called rational Cherednik algebras. These algebras have been studied for over 15 years and revealed a rich structure and deep connections with algebraic geometry, representation theory, and combinatorics. In this paper, we define global analogs of Cherednik algebras, attached to any smooth algebraic or analytic variety $X$ with a finite group $G$ of automorphisms of $X$. We show that many interesting properties of Cherednik algebras (such as the PBW theorem, universal deformation property, relation to Calogero–Moser spaces, action on quasiinvariants) still hold in the global case, and give several interesting examples. Then we define the KZ functor for global Cherednik algebras, and use it to define (in the case $\pi_2(X)\otimes\mathbb Q=0$) a flat deformation of the orbifold fundamental group of the orbifold $X/G$, which we call the Hecke algebra of $X/G$. This includes usual, affine, and double affine Hecke algebras for Weyl groups, Hecke algebras of complex reflection groups, as well as many new examples.

Key words and phrases: Cherednik algebra, reflection hypersurface, Hecke algebra, variety with a finite group action.

DOI: https://doi.org/10.17323/1609-4514-2017-17-4-635-666

Full text: http://www.mathjournals.org/.../2017-017-004-004.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 20C08, 33D80
Language:

Citation: Pavel Etingof, “Cherednik and Hecke algebras of varieties with a finite group action”, Mosc. Math. J., 17:4 (2017), 635–666

Citation in format AMSBIB
\Bibitem{Eti17}
\by Pavel~Etingof
\paper Cherednik and Hecke algebras of varieties with a~finite group action
\jour Mosc. Math.~J.
\yr 2017
\vol 17
\issue 4
\pages 635--666
\mathnet{http://mi.mathnet.ru/mmj651}
\crossref{https://doi.org/10.17323/1609-4514-2017-17-4-635-666}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000416897600004}


Linking options:
  • http://mi.mathnet.ru/eng/mmj651
  • http://mi.mathnet.ru/eng/mmj/v17/i4/p635

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Moscow Mathematical Journal
    Number of views:
    This page:56
    References:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020