RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2019, Volume 19, Number 2, Pages 275–305 (Mi mmj735)  

Palais leaf-space manifolds and surfaces carrying holomorphic flows

Ana Cristina Ferreiraa, Julio C. Rebelob, Helena Reisc

a Centro de Matemática da Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
b Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, 118 Route de Narbonne, F-31062 Toulouse, France
c Centro de Matemática da Universidade do Porto, Faculdade de Economia da Universidade do Porto, Portugal

Abstract: Given a pair of commuting holomorphic vector fields defined on a neighborhood of $(0,0) \in \mathbb{C}^2$, we discuss the problem of globalizing them as an action of $\mathbb{C}^2$ on a suitable complex surfaces along with some related questions. A review of Palais' theory about globalization of local transformation groups is also included in our discussion.

Key words and phrases: holomorphic local transformation groups, foliations and leaf spaces, holomorphic complete vector fields.

DOI: https://doi.org/10.17323/1609-4514-2019-19-2-275-305

Full text: http://www.mathjournals.org/.../2019-019-002-004.html
References: PDF file   HTML file

Bibliographic databases:

MSC: Primary 32S65; Secondary 37F75, 57S20

Citation: Ana Cristina Ferreira, Julio C. Rebelo, Helena Reis, “Palais leaf-space manifolds and surfaces carrying holomorphic flows”, Mosc. Math. J., 19:2 (2019), 275–305

Citation in format AMSBIB
\Bibitem{FerRebRei19}
\by Ana~Cristina~Ferreira, Julio~C.~Rebelo, Helena~Reis
\paper Palais leaf-space manifolds and surfaces carrying holomorphic flows
\jour Mosc. Math.~J.
\yr 2019
\vol 19
\issue 2
\pages 275--305
\mathnet{http://mi.mathnet.ru/mmj735}
\crossref{https://doi.org/10.17323/1609-4514-2019-19-2-275-305}


Linking options:
  • http://mi.mathnet.ru/eng/mmj735
  • http://mi.mathnet.ru/eng/mmj/v19/i2/p275

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Moscow Mathematical Journal
    Number of views:
    This page:38
    References:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020