RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2019, Volume 19, Number 3, Pages 397–463 (Mi mmj741)  

Toric topology of the complex Grassmann manifolds

V. M. Bukhshtaberabc, S. Terzićd

a Skolkovo Institute of Science and Technology, Moscow, Russia
b Moscow State University M.V.Lomonosov, Moscow, Russia
c Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow, Russia
d Faculty of Science and Mathematics, University of Montenegro, Podgorica, Montenegro

Abstract: The family of the complex Grassmann manifolds $G_{n,k}$ with the canonical action of the torus $T^n=\mathbb{T}^{n}$ and the analogue of the moment map $\mu \colon G_{n,k}\to \Delta _{n,k}$ for the hypersimplex $\Delta _{n,k}$, is well known. In this paper we study the structure of the orbit space $G_{n,k}/T^n$ by developing the methods of toric geometry and toric topology. We use a subdivision of $G_{n,k}$ into the strata $W_{\sigma}$. Relying on this subdivision we determine all regular and singular points of the moment map $\mu$, introduce the notion of the admissible polytopes $P_\sigma$ such that $\mu (W_{\sigma}) = \circ{P}_{\sigma}$ and the notion of the spaces of parameters $F_{\sigma}$, which together describe $W_{\sigma}/T^{n}$ as the product $\circ{P}_{\sigma} \times F_{\sigma}$. To find the appropriate topology for the set $\bigcup_{\sigma} \circ{P}_{\sigma} \times F_{\sigma}$ we introduce also the notions of the universal space of parameters $\tilde{\mathcal{F}}$ and the virtual spaces of parameters $\tilde{F}_{\sigma}\subset \tilde{\mathcal{F}}$ such that there exist the projections $\tilde{F}_{\sigma}\to F_{\sigma}$. Having this in mind, we propose a method for the description of the orbit space $G_{n,k}/T^n$. The existence of the action of the symmetric group $S_{n}$ on $G_{n,k}$ simplifies the application of this method. In our previous paper we proved that the orbit space $G_{4,2}/T^4$, which is defined by the canonical $T^4$-action of complexity $1$, is homeomorphic to $\partial \Delta _{4,2}\ast \mathbb{C} P^1$. We prove in this paper that the orbit space $G_{5,2}/T^5$, which is defined by the canonical $T^5$-action of complexity $2$, is homotopy equivalent to the space which is obtained by attaching the disc $D^8$ to the space $\Sigma ^{4}\mathbb{R} P^2$ by the generator of the group $\pi _{7}(\Sigma ^{4}\mathbb{R} P^2)=\mathbb{Z}_{4}$. In particular, $(G_{5,2}/G_{4,2})/T^5$ is homotopy equivalent to $\partial \Delta _{5,2}\ast \mathbb{C} P^2$. The methods and the results of this paper are very important for the construction of the theory of $(2l,q)$-manifolds we have been recently developing, and which is concerned with manifolds $M^{2l}$ with an effective action of the torus $T^{q}$, $q\leq l$, and an analogue of the moment map $\mu \colon M^{2l}\to P^{q}$, where $P^{q}$ is a $q$-dimensional convex polytope.

Key words and phrases: Grassmann manifold, Thom spaces, torus action, orbit spaces, spaces of parameters.

DOI: https://doi.org/10.17323/1609-4514-2019-19-3-397-463

Full text: http://www.mathjournals.org/.../2019-019-003-001.html
References: PDF file   HTML file

Bibliographic databases:

MSC: 57S25, 57N65, 53D20, 14M25, 52B11, 14B05.
Language:

Citation: V. M. Bukhshtaber, S. Terzić, “Toric topology of the complex Grassmann manifolds”, Mosc. Math. J., 19:3 (2019), 397–463

Citation in format AMSBIB
\Bibitem{BukTer19}
\by V.~M.~Bukhshtaber, S.~Terzi\'c
\paper Toric topology of the complex Grassmann manifolds
\jour Mosc. Math.~J.
\yr 2019
\vol 19
\issue 3
\pages 397--463
\mathnet{http://mi.mathnet.ru/mmj741}
\crossref{https://doi.org/10.17323/1609-4514-2019-19-3-397-463}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3993003}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000476630800001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85069867997}


Linking options:
  • http://mi.mathnet.ru/eng/mmj741
  • http://mi.mathnet.ru/eng/mmj/v19/i3/p397

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Moscow Mathematical Journal
    Number of views:
    This page:17
    References:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020