RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mosc. Math. J., 2003, Volume 3, Number 2, Pages 273–333 (Mi mmj89)  

This article is cited in 5 scientific papers (total in 5 papers)

The combinatorial geometry of singularities and Arnold's series $E$$Z$$Q$

E. Brieskorn, A. M. Pratusevich, F. Rothenhäusler

University of Bonn, Institute for Applied Mathematics

Abstract: We consider discrete subgroups $\Gamma$ of the simply connected Lie group $\widetildeSU(1,1)$ of finite level. This Lie group has the structure of a 3-dimensional Lorentz manifold coming from the Killing form. $\Gamma$ acts on $\widetildeSU(1,1)$ by left translations. We want to describe the Lorentz space form $\Gamma\setminus\widetildeSU(1,1)$ by constructing a fundamental domain $F$ for $\Gamma$. We want $F$ to be a polyhedron with totally geodesic faces. We construct such $F$ for all $\Gamma$ satisfying the following condition: The image $\overline\Gamma$ of $\Gamma$ in $PSU(1,1)$ has a fixed point $u$ in the unit disk of order larger than the level of $\Gamma$. The construction depends on $\Gamma$ and $\Gamma u$.
For co-compact ${\Gamma}$ the Lorentz space form $\Gamma\setminus\widetildeSU(1,1)$ is the link of a quasi-homogeneous Gorenstein singularity. The quasi-homogeneous singularities of Arnold's series $E$$Z$$Q$ are of this type. We compute the fundamental domains for the corresponding group. They are represented by polyhedra in Lorentz 3-space shown on Tables 1–13. Each series exhibits a regular characteristic pattern of its combinatorial geometry related to classical uniform polyhedra.

Key words and phrases: Lorentz space form, polyhedral fundamental domain, quasihomogeneous singularity, Arnold singularity series.

Full text: http://www.ams.org/.../abst3-2-2003.html
References: PDF file   HTML file

Bibliographic databases:

MSC: Primary 53C50; Secondary 14J17, 20H10, 30F35, 30F60,32G15, 32S25, 51M20, 52
Language: English

Citation: E. Brieskorn, A. M. Pratusevich, F. Rothenhäusler, “The combinatorial geometry of singularities and Arnold's series $E$$Z$$Q$”, Mosc. Math. J., 3:2 (2003), 273–333

Citation in format AMSBIB
\Bibitem{BriPraRot03}
\by E.~Brieskorn, A.~M.~Pratusevich, F.~Rothenh\"ausler
\paper The combinatorial geometry of singularities and Arnold's series~$E$,~$Z$,~$Q$
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 2
\pages 273--333
\mathnet{http://mi.mathnet.ru/mmj89}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2025263}
\zmath{https://zbmath.org/?q=an:1046.32004}
\elib{http://elibrary.ru/item.asp?id=8379104}


Linking options:
  • http://mi.mathnet.ru/eng/mmj89
  • http://mi.mathnet.ru/eng/mmj/v3/i2/p273

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Pratoussevitch A., “Fundamental domains in Lorentzian geometry”, Geometriae Dedicata, 126:1 (2007), 155–175  crossref  mathscinet  zmath  isi
    2. Pratoussevitch A., “On the link space of a Q-Gorenstein quasi-homogeneous surface singularity”, Real and Complex Singularities, Trends in Mathematics, 2007, 311–325  crossref  mathscinet  zmath  isi
    3. Dolgachev I.V., “McKay's Correspondence for Cocompact Discrete Subgroups of SU(1,1)”, Groups and Symmetries: From Neolithic Scots to John McKay, CRM Proceedings & Lecture Notes, 47, 2009, 111–133  crossref  mathscinet  zmath  isi
    4. Pratoussevitch A., “The combinatorial geometry of Q-Gorenstein quasi-homogeneous surface singularities”, Differential Geom Appl, 29:4 (2011), 507–515  crossref  mathscinet  zmath  isi
    5. He Ya.-H., Read J., “Hecke Groups, Dessins D'Enfants, and the Archimedean Solids”, Front. Physics, 3 (2015), 91  crossref  isi
  • Moscow Mathematical Journal
    Number of views:
    This page:128
    References:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017