RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mosk. Mat. Obs., 1984, Volume 47, Pages 22–67 (Mi mmo443)  

This article is cited in 7 scientific papers (total in 8 papers)

Elliptic pseudodifferential operators on a closed curve

M. S. Agranovich


Full text: PDF file (7277 kB)

Bibliographic databases:
UDC: 517.43
MSC: Primary 35S05; Secondary 35J99, 47G05, 58G15
Received: 10.12.1980

Citation: M. S. Agranovich, “Elliptic pseudodifferential operators on a closed curve”, Tr. Mosk. Mat. Obs., 47, MSU, M., 1984, 22–67

Citation in format AMSBIB
\Bibitem{Agr84}
\by M.~S.~Agranovich
\paper Elliptic pseudodifferential operators on a~closed curve
\serial Tr. Mosk. Mat. Obs.
\yr 1984
\vol 47
\pages 22--67
\publ MSU
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo443}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=774945}
\zmath{https://zbmath.org/?q=an:0573.35071}


Linking options:
  • http://mi.mathnet.ru/eng/mmo443
  • http://mi.mathnet.ru/eng/mmo/v47/p22

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. S. Agranovich, B. A. Amosov, “Elliptic pseudodifferential matrix operators on a closed curve”, Funct. Anal. Appl., 15:3 (1981), 217–219  mathnet  crossref  mathscinet  zmath  isi
    2. B. A. Amosov, “On a theory of pseudo-differential operators on the circle”, Russian Math. Surveys, 43:3 (1988), 197–198  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. A. S. Milevskii, “Similarity transformations and spectral properties of hypoelliptic pseudodifferential operators on a circle”, Funct. Anal. Appl., 23:3 (1989), 231–233  mathnet  crossref  mathscinet  zmath  isi
    4. V. A. Lyubishkin, V. E. Podolskii, “On the summability of regularized traces of differential operators”, Math. Notes, 54:2 (1993), 790–793  mathnet  crossref  mathscinet  zmath  isi
    5. M. S. Agranovich, “Spectral Problems for the Dirac System with Spectral Parameter in Local Boundary Conditions”, Funct. Anal. Appl., 35:3 (2001), 161–175  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. B. A. Amosov, M. Sh. Birman, M. I. Vishik, L. R. Volevich, I. M. Gel'fand, L. F. Fridlender, M. A. Shubin, “Mikhail Semenovich Agranovich (on his 70th birthday)”, Russian Math. Surveys, 56:4 (2001), 777–784  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. M. S. Agranovich, “Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains”, Russian Math. Surveys, 57:5 (2002), 847–920  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. B. Kanguzhin, M. Ruzhansky, N. Tokmagambetov, “On convolutions in Hilbert spaces”, Funct. Anal. Appl., 51:3 (2017), 221–224  mathnet  crossref  crossref  isi  elib
  • Trudy Moskovskogo Matematicheskogo Obshchestva
    Number of views:
    This page:146
    Full text:75

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020