|
This article is cited in 3 scientific papers (total in 3 papers)
The Fokker–Planck–Kolmogorov equations with a potential and a non-uniformly elliptic diffusion matrix
S. V. Shaposhnikov M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
We study solutions of the Fokker–Planck–Kolmogorov equation with unbounded coefficients and a non-uniformly elliptic diffusion matrix. Upper bounds for solutions are obtained. In addition, new estimates with a Lyapunov function are obtained.
Key words and phrases:
parabolic equations for measures; Fokker–Planck–Kolmogorov equation; diffusion processes.
Full text:
PDF file (301 kB)
References:
PDF file
HTML file
English version:
Transactions of the Moscow Mathematical Society, 2013, 74, 15–29
Bibliographic databases:
UDC:
517.986.7
MSC: 35R15, 35K10, 60J60 Received: 05.02.2013
Citation:
S. V. Shaposhnikov, “The Fokker–Planck–Kolmogorov equations with a potential and a non-uniformly elliptic diffusion matrix”, Tr. Mosk. Mat. Obs., 74, no. 1, MCCME, M., 2013, 17–34; Trans. Moscow Math. Soc., 74 (2013), 15–29
Citation in format AMSBIB
\Bibitem{Sha13}
\by S.~V.~Shaposhnikov
\paper The Fokker--Planck--Kolmogorov equations with a potential and a non-uniformly elliptic diffusion matrix
\serial Tr. Mosk. Mat. Obs.
\yr 2013
\vol 74
\issue 1
\pages 17--34
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo539}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3123622}
\zmath{https://zbmath.org/?q=an:06371554}
\elib{https://elibrary.ru/item.asp?id=21369362}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2013
\vol 74
\pages 15--29
\crossref{https://doi.org/10.1090/S0077-1554-2014-00211-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84945127497}
Linking options:
http://mi.mathnet.ru/eng/mmo539 http://mi.mathnet.ru/eng/mmo/v74/i1/p17
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Manita O.A., Romanov M.S., Shaposhnikov S.V., “on Uniqueness of Solutions To Nonlinear Fokker-Planek-Kolmogorov Equations”, Nonlinear Anal.-Theory Methods Appl., 128 (2015), 199–226
-
M. Kunze, L. Lorenzi, A. Rhandi, “Kernel estimates for nonautonomous Kolmogorov equations”, Adv. Math., 287 (2016), 600–639
-
V. I. Bogachev, M. Roeckner, S. V. Shaposhnikov, “Distances between transition probabilities of diffusions and applications to nonlinear Fokker-Planck-Kolmogorov equations”, J. Funct. Anal., 271:5 (2016), 1262–1300
|
Number of views: |
This page: | 798 | Full text: | 308 | References: | 32 |
|