RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mosk. Mat. Obs., 2013, Volume 74, Issue 2, Pages 297–315 (Mi mmo550)  

This article is cited in 1 scientific paper (total in 1 paper)

Periods of second kind differentials of $(n,s)$-curves

J. C. Eilbeckab, K. Eilersc, V. Z. Enolskiadb

a Department of Mathematics, Heriot-Watt University, Edinburgh, UK
b Maxwell Institute for Mathematical Sciences
c Faculty of Mathematics, University of Oldenburg, Germany
d Institute of Magnetism, National Academy of Sciences of Ukraine, Kiev, 03142, Ukraine

Abstract: For elliptic curves expressions for the periods of elliptic integrals of the second kind in terms of theta-constants, have been known since the middle of the 19th century. In this paper we consider the problem of generalizing these results to curves of higher genera, in particular to a special class of algebraic curves, the so-called $(n,s)$-curves. It is shown that the representations required can be obtained by the comparison of two equivalent expressions for the projective connection, one due to Fay–Wirtinger and the other from Klein–Weierstrass. As a principle example, we consider the case of the genus two hyperelliptic curve, and a number of new Thomae and Rosenhain type formulae are obtained. We anticipate that our analysis for the genus two curve can be extended to higher genera hyperelliptic curves, as well as to other classes of $(n,s)$ non-hyperelliptic curves. References: 33 entries.

Key words and phrases: moduli of algebraic curves, theta-constants, sigma-functions.

Full text: PDF file (362 kB)
References: PDF file   HTML file

English version:
Transactions of the Moscow Mathematical Society, 2013, 74, 245–260

Bibliographic databases:

UDC: 515.178.2+517.958+514
MSC: 32G15, 14K25, 30F30
Received: 14.05.2013
Language:

Citation: J. C. Eilbeck, K. Eilers, V. Z. Enolski, “Periods of second kind differentials of $(n,s)$-curves”, Tr. Mosk. Mat. Obs., 74, no. 2, MCCME, M., 2013, 297–315; Trans. Moscow Math. Soc., 74 (2013), 245–260

Citation in format AMSBIB
\Bibitem{EilEilEno13}
\by J.~C.~Eilbeck, K.~Eilers, V.~Z.~Enolski
\paper Periods of second kind differentials of $(n,s)$-curves
\serial Tr. Mosk. Mat. Obs.
\yr 2013
\vol 74
\issue 2
\pages 297--315
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo550}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3235799}
\zmath{https://zbmath.org/?q=an:1302.30053}
\elib{http://elibrary.ru/item.asp?id=21369373}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2013
\vol 74
\pages 245--260
\crossref{https://doi.org/10.1090/s0077-1554-2014-00218-1}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960097646}


Linking options:
  • http://mi.mathnet.ru/eng/mmo550
  • http://mi.mathnet.ru/eng/mmo/v74/i2/p297

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Keno Eilers, “Modular Form Representation for Periods of Hyperelliptic Integrals”, SIGMA, 12 (2016), 060, 13 pp.  mathnet  crossref
  • Trudy Moskovskogo Matematicheskogo Obshchestva
    Number of views:
    This page:173
    Full text:49
    References:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020