RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mosk. Mat. Obs., 2014, Volume 75, Issue 2, Pages 107–123 (Mi mmo559)  

This article is cited in 1 scientific paper (total in 1 paper)

Distribution of the eigenvalues of singular differential operators in a space of vector-functions

N. F. Valeeva, È. A. Nazirovab, Ya. T. Sultanaevc

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa
b Bashkir State University, Ufa
c Bashkir State Pedagogical University, Ufa

Abstract: A significant part of B. M. Levitan's scientific activity dealt with questions on the distribution of the eigenvalues of differential operators [1]. To study the spectral density, he mainly used Carleman's method, which he perfected. As a rule, he considered scalar differential operators. The purpose of this paper is to study the spectral density of differential operators in a space of vector-functions. The paper consists of two sections. In the first we study the asymptotics of a fourth-order differential operator
$$ y^{(4)}+Q(x)y=\lambda y, $$
both taking account of the rotational velocity of the eigenvectors of the matrix $ Q(x)$ and without taking the rotational velocity of these vectors into account. In Section 2 we study the asymptotics of the spectrum of a non-semi-bounded Sturm–Liouville operator in a space of vector-functions of any finite dimension.

Full text: PDF file (286 kB)
References: PDF file   HTML file

English version:
Transactions of the Moscow Mathematical Society, 2014, 75, 89–102

UDC: 517.926, 517.928, 517.984.5
MSC: 47B39, 34L05, 34L02, 34B25
Received: 24.12.2013
Revised: 16.06.2014

Citation: N. F. Valeev, È. A. Nazirova, Ya. T. Sultanaev, “Distribution of the eigenvalues of singular differential operators in a space of vector-functions”, Tr. Mosk. Mat. Obs., 75, no. 2, MCCME, M., 2014, 107–123; Trans. Moscow Math. Soc., 75 (2014), 89–102

Citation in format AMSBIB
\Bibitem{ValNazSul14}
\by N.~F.~Valeev, \`E.~A.~Nazirova, Ya.~T.~Sultanaev
\paper Distribution of the eigenvalues of singular differential operators in a space of vector-functions
\serial Tr. Mosk. Mat. Obs.
\yr 2014
\vol 75
\issue 2
\pages 107--123
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo559}
\elib{http://elibrary.ru/item.asp?id=23780158}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2014
\vol 75
\pages 89--102
\crossref{https://doi.org/10.1090/S0077-1554-2014-00238-7}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84959053257}


Linking options:
  • http://mi.mathnet.ru/eng/mmo559
  • http://mi.mathnet.ru/eng/mmo/v75/i2/p107

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. F. Valeev, E. A. Nazirova, Ya. T. Sultanaev, “On a new approach for studying asymptotic behavior of solutions to singular differential equations”, Ufa Math. J., 7:3 (2015), 9–14  mathnet  crossref  isi  elib
  • Trudy Moskovskogo Matematicheskogo Obshchestva
    Number of views:
    This page:233
    Full text:74
    References:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020