RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Mosk. Mat. Obs., 1958, Volume 7, Pages 121–148 (Mi mmo72)  

This article is cited in 7 scientific papers (total in 7 papers)

A generalization of Wiener's Tauberian theorem and harmonic analysis of rapidly increasing functions

B. I. Korenblum

Kiev

Full text: PDF file (3266 kB)

Bibliographic databases:

Document Type: Article
Received: 15.09.1956

Citation: B. I. Korenblum, “A generalization of Wiener's Tauberian theorem and harmonic analysis of rapidly increasing functions”, Tr. Mosk. Mat. Obs., 7, GIFML, Moscow, 1958, 121–148

Citation in format AMSBIB
\Bibitem{Kor58}
\by B.~I.~Korenblum
\paper A generalization of Wiener's Tauberian theorem and harmonic analysis of rapidly increasing functions
\serial Tr. Mosk. Mat. Obs.
\yr 1958
\vol 7
\pages 121--148
\publ GIFML
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/mmo72}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=101455}
\zmath{https://zbmath.org/?q=an:0085.09301}


Linking options:
  • http://mi.mathnet.ru/eng/mmo72
  • http://mi.mathnet.ru/eng/mmo/v7/p121

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. I. Korenblum, “Invariant subspaces of the shift operator in weighted Hilbert space”, Math. USSR-Sb., 18:1 (1972), 111–138  mathnet  crossref  mathscinet  zmath
    2. B. I. Korenblum, “Closed ideals in the ring $A^n$”, Funct. Anal. Appl., 6:3 (1972), 203–214  mathnet  crossref  mathscinet  zmath
    3. Yu. N. Drozhzhinov, B. I. Zavialov, “A Wiener-type Tauberian theorem for generalized functions of slow growth”, Sb. Math., 189:7 (1998), 1047–1086  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. Yu. N. Drozhzhinov, B. I. Zavialov, “Tauberian theorem for generalized multiplicative convolutions”, Izv. Math., 64:1 (2000), 35–92  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. A. F. Grishin, I. V. Poedintseva, “Towards the Tauberian theorem of Keldysh”, J. Math. Sci. (N. Y.), 134:4 (2006), 2272–2287  mathnet  crossref  mathscinet  zmath
    6. A. F. Grishin, I. V. Poedintseva, “Abelian and Tauberian theorems for integrals”, St. Petersburg Math. J., 26:3 (2015), 357–409  mathnet  crossref  mathscinet  isi  elib
    7. Yu. N. Drozhzhinov, “Multidimensional Tauberian theorems for generalized functions”, Russian Math. Surveys, 71:6 (2016), 1081–1134  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  • Trudy Moskovskogo Matematicheskogo Obshchestva
    Number of views:
    This page:90
    Full text:47

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018