RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Tr., 2013, Volume 16, Number 1, Pages 63–88 (Mi mt250)  

This article is cited in 2 scientific papers (total in 2 papers)

Derivations on ideals in commutative $AW^*$-algebras

G. B. Levitina, V. I. Chilin

National University of Uzbekistan, Faculty of Mathematics and Mechanics, Tashkent, Uzbekistan

Abstract: Let $\mathcal A$ be a commutative $AW^*$-algebra.We denote by $S(\mathcal A)$ the $*$-algebra of measurable operators that are affiliated with $\mathcal A$. For an ideal $\mathcal I$ in $\mathcal A$, let $s(\mathcal I)$ denote the support of $\mathcal I$. Let $\mathbb Y$ be a solid linear subspace in $S(\mathcal A)$. We find necessary and sufficient conditions for existence of nonzero band preserving derivations from $\mathcal I$ to $\mathbb Y$. We prove that no nonzero band preserving derivation from $\mathcal I$ to $\mathbb Y$ exists if either $\mathbb Y\subset\mathcal A$ or $\mathbb Y$ is a quasi-normed solid space. We also show that a nonzero band preserving derivation from $\mathcal I$ to $S(\mathcal A)$ exists if and only if the boolean algebra of projections in the $AW^*$-algebra $s(\mathcal I)\mathcal A$ is not $\sigma$-distributive.

Key words: Boolean algebra, commutative $AW^*$-algebra, ideal, derivation.

Full text: PDF file (311 kB)
References: PDF file   HTML file

English version:
Siberian Advances in Mathematics, 2014, 24:1, 26–42

Bibliographic databases:

UDC: 517.98
Received: 04.06.2012

Citation: G. B. Levitina, V. I. Chilin, “Derivations on ideals in commutative $AW^*$-algebras”, Mat. Tr., 16:1 (2013), 63–88; Siberian Adv. Math., 24:1 (2014), 26–42

Citation in format AMSBIB
\Bibitem{LevChi13}
\by G.~B.~Levitina, V.~I.~Chilin
\paper Derivations on ideals in commutative $AW^*$-algebras
\jour Mat. Tr.
\yr 2013
\vol 16
\issue 1
\pages 63--88
\mathnet{http://mi.mathnet.ru/mt250}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3156674}
\transl
\jour Siberian Adv. Math.
\yr 2014
\vol 24
\issue 1
\pages 26--42
\crossref{https://doi.org/10.3103/S1055134414010040}


Linking options:
  • http://mi.mathnet.ru/eng/mt250
  • http://mi.mathnet.ru/eng/mt/v16/i1/p63

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Alimov, V. I. Chilin, “Differentsirovaniya so znacheniyami v idealnykh $F$-prostranstvakh izmerimykh funktsii”, Vladikavk. matem. zhurn., 20:1 (2018), 21–29  mathnet  crossref
    2. A. F. Ber, V. I. Chilin, F. A. Sukochev, “Derivations on Banach $*$-ideals in von Neumann algebras”, Vladikavk. matem. zhurn., 20:2 (2018), 23–28  mathnet  crossref
  • Математические труды Siberian Advances in Mathematics
    Number of views:
    This page:212
    Full text:64
    References:34
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020