RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Tr., 2014, Volume 17, Number 1, Pages 19–69 (Mi mt266)  

Nonsplit extensions of Abelian $p$-groups by $L_2(p^n)$ and general theorems on extensions of finite groups

V. P. Burichenko

Institute of Mathematics, National Academy of Sciences of the Republic of Belarus, Minsk, Belarus

Abstract: Let a group $\widetilde G$ be a nonsplit extension of an elementary Abelian $p$-group $V$ by the group $G=L_2(p^n)$ such that the action of $G$ on $V$ is irreducible. In the present article, we classify (up to isomorphism) such groups $\widetilde G$ with $p^n\ne3^4$.
The main part of the article consists of proofs of numerous general assertions on representations, cohomologies, and extensions of finite groups. Further, we use these results in our study of extensions by $L_2(q)$.

Key words: finite simple groups, cohomologies, nonsplit extensions.

Full text: PDF file (471 kB)
References: PDF file   HTML file

English version:
Siberian Advances in Mathematics, 2015, 25:2, 77–109

Bibliographic databases:

Document Type: Article
UDC: 512.542
Received: 23.11.2012

Citation: V. P. Burichenko, “Nonsplit extensions of Abelian $p$-groups by $L_2(p^n)$ and general theorems on extensions of finite groups”, Mat. Tr., 17:1 (2014), 19–69; Siberian Adv. Math., 25:2 (2015), 77–109

Citation in format AMSBIB
\Bibitem{Bur14}
\by V.~P.~Burichenko
\paper Nonsplit extensions of Abelian $p$-groups by $L_2(p^n)$ and general theorems on extensions of finite groups
\jour Mat. Tr.
\yr 2014
\vol 17
\issue 1
\pages 19--69
\mathnet{http://mi.mathnet.ru/mt266}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3236360}
\transl
\jour Siberian Adv. Math.
\yr 2015
\vol 25
\issue 2
\pages 77--109
\crossref{https://doi.org/10.3103/S1055134415020017}


Linking options:
  • http://mi.mathnet.ru/eng/mt266
  • http://mi.mathnet.ru/eng/mt/v17/i1/p19

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические труды Siberian Advances in Mathematics
    Number of views:
    This page:116
    Full text:45
    References:42
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019