RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Tr., 2014, Volume 17, Number 2, Pages 163–183 (Mi mt282)  

Peano's theorem and coplanarity points of space curves

Yu. G. Nikonorov

South Mathematical Institute of VSC RAS, Vladikavkaz, Russia

Abstract: We study coplanarity points on space differentiable curves and their asymptotic properties. The results make it possible to formulate some general conjectures on the asymptotics of coplanarity points.

Key words: parametric curve in Euclidean space, smooth curve, Peano theorem, coplanarity point.

Full text: PDF file (251 kB)
References: PDF file   HTML file

English version:
Siberian Advances in Mathematics, 2015, 25:2, 124–137

Bibliographic databases:

Document Type: Article
UDC: 514.752.22+517
Received: 01.04.2014

Citation: Yu. G. Nikonorov, “Peano's theorem and coplanarity points of space curves”, Mat. Tr., 17:2 (2014), 163–183; Siberian Adv. Math., 25:2 (2015), 124–137

Citation in format AMSBIB
\Bibitem{Nik14}
\by Yu.~G.~Nikonorov
\paper Peano's theorem and coplanarity points of space curves
\jour Mat. Tr.
\yr 2014
\vol 17
\issue 2
\pages 163--183
\mathnet{http://mi.mathnet.ru/mt282}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3330056}
\transl
\jour Siberian Adv. Math.
\yr 2015
\vol 25
\issue 2
\pages 124--137
\crossref{https://doi.org/10.3103/S1055134415020030}


Linking options:
  • http://mi.mathnet.ru/eng/mt282
  • http://mi.mathnet.ru/eng/mt/v17/i2/p163

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические труды Siberian Advances in Mathematics
    Number of views:
    This page:81
    Full text:19
    References:11
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018