|
This article is cited in 18 scientific papers (total in 18 papers)
Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces. II
S. K. Vodop'yanova, A. D.-O. Ukhlovb a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Khabarovsk State University of Technology
Abstract:
We study the properties of the mappings inducing a bounded operator of Lebesgue or Sobolev spaces by change of variable and the properties of the operator of extension of functions in Sobolev classes beyond the domain of definition.
Key words:
quasiadditive set function, Lebesgue space, Sobolev space, embedding theorems.
Full text:
PDF file (2797 kB)
References:
PDF file
HTML file
English version:
Siberian Advances in Mathematics, 2005, 15:1, 91–125
Bibliographic databases:
UDC:
517.518.1+517.54 Received: 02.04.2002
Citation:
S. K. Vodop'yanov, A. D.-O. Ukhlov, “Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces. II”, Mat. Tr., 7:1 (2004), 13–49; Siberian Adv. Math., 15:1 (2005), 91–125
Citation in format AMSBIB
\Bibitem{VodUkh04}
\by S.~K.~Vodop'yanov, A.~D.-O.~Ukhlov
\paper Set Functions and Their Applications in the~Theory of Lebesgue and Sobolev Spaces.~II
\jour Mat. Tr.
\yr 2004
\vol 7
\issue 1
\pages 13--49
\mathnet{http://mi.mathnet.ru/mt69}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2068275}
\zmath{https://zbmath.org/?q=an:1091.47027}
\elib{https://elibrary.ru/item.asp?id=9530092}
\transl
\jour Siberian Adv. Math.
\yr 2005
\vol 15
\issue 1
\pages 91--125
Linking options:
http://mi.mathnet.ru/eng/mt69 http://mi.mathnet.ru/eng/mt/v7/i1/p13
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Cycle of papers
This publication is cited in the following articles:
-
Karmanova M., “Geometric measure theory formulas on rectifiable metric spaces”, Interaction of Analysis and Geometry, Contemporary Mathematics Series, 424, 2007, 103–136
-
Reshetnyak Yu.G., “Sobolev-type classes of mappings with values in metric spaces”, Interaction of Analysis and Geometry, Contemporary Mathematics Series, 424, 2007, 209–226
-
Vodopyanov S.K., “Foundations of the theory of mappings with bounded distortion on carnot groups”, Interaction of Analysis and Geometry, Contemporary Mathematics Series, 424, 2007, 303–344
-
Karmanova M., “Rectifiable sets and coarea formula for metric-valued mappings”, J. Funct. Anal., 254:5 (2008), 1410–1447
-
Ukhlov A., Vodopyanov S.K., “Mappings associated with weighted Sobolev spaces”, Complex Analysis and Dynamical Systems III, Contemporary Mathematics Series, 455, 2008, 369–382
-
Gol'dshtein V., Ukhlov A., “Weighted Sobolev spaces and embedding theorems”, Trans. Amer. Math. Soc., 361:7 (2009), 3829–3850
-
Karmanova M., Vodop'yanov S., “Geometry of Carnot-Caratheodory Spaces, Differentiability, Coarea and Area Formulas”, Analysis and Mathematical Physics, Trends in Mathematics, 2009, 233–335
-
Ukhlov A., Vodop'yanov S.K., “Mappings with bounded (P, Q)-distortion on Carnot groups”, Bull Sci Math, 134:6 (2010), 605–634
-
Ukhlov A., “Composition operators in weighted Sobolev spaces on Carnot groups”, Acta Math Hungar, 133:1–2 (2011), 103–127
-
M. B. Karmanova, “The graphs of Lipschitz functions and minimal surfaces on Carnot groups”, Siberian Math. J., 53:4 (2012), 672–690
-
Karmanova M. Vodopyanov S., “A Coarea Formula for Smooth Contact Mappings of Carnot-Carath,Odory Spaces”, Acta Appl. Math., 128:1 (2013), 67–111
-
M. B. Karmanova, “The area formula for graphs on $4$-dimensional $2$-step sub-Lorentzian structures”, Siberian Math. J., 56:5 (2015), 852–871
-
M. B. Karmanova, “Graph surfaces over three-dimensional Lie groups with sub-Riemannian structure”, Siberian Math. J., 56:6 (2015), 1080–1092
-
A. V. Menovshchikov, “Composition operators in Orlicz–Sobolev spaces”, Siberian Math. J., 57:5 (2016), 849–859
-
M. B. Karmanova, “Graph surfaces on five-dimensional sub-Lorentzian structures”, Siberian Math. J., 58:1 (2017), 91–108
-
M. B. Karmanova, “Area formulas for classes of Hölder continuous mappings of Carnot groups”, Siberian Math. J., 58:5 (2017), 817–836
-
M. B. Karmanova, “Three-dimensional graph surfaces on five-dimensional Carnot–Carathéodory spaces”, Siberian Math. J., 59:4 (2018), 657–676
-
M. B. Karmanova, “Two-step sub-Lorentzian structures and graph surfaces”, Izv. Math., 84:1 (2020), 52–94
|
Number of views: |
This page: | 433 | Full text: | 173 | References: | 65 | First page: | 1 |
|