Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Tr., 2002, Volume 5, Number 1, Pages 46–65 (Mi mt98)  

This article is cited in 2 scientific papers (total in 2 papers)

Finitely Additive Measures in the Ergodic Theory of Markov Chains. II

A. I. Zhdanok

Tyva State University

Abstract: We develop a new approach to the study of general Markov chains (MC), i.e., homogeneous Markov processes with discrete time on an arbitrary phase space. In the first part of the article, we suggested an extension of the traditional space of countably additive measures to the space of finitely additive measures. Given an arbitrary phase space, we constructed its “gamma-compactification” to which we extended each Markov chain. We established an isomorphism between all finitely additive Markov chains on the initial space and Feller countably additive chains on its “gamma-compactification”. Using the above construction, in the second part, we prove weak and strong ergodic theorems that establish a substantial dependence of the asymptotic behavior of a Markov chain on the presence and properties of invariant finitely additive measures. The study in the article is carried out in the framework of functional operator approach.

Key words: finitely additive measure, countably additive measure, Markov chain, Markov operators, arbitrary phase space, compactification of an arbitrary phase space, extension of a Markov chain to the compactification, invariant measure, ergodic theorems.

Full text: PDF file (1936 kB)
References: PDF file   HTML file

English version:
Siberian Advances in Mathematics, 2003, 13:2, 108–125

Bibliographic databases:

UDC: 519.21+517.98+515.12
Received: 07.03.2001

Citation: A. I. Zhdanok, “Finitely Additive Measures in the Ergodic Theory of Markov Chains. II”, Mat. Tr., 5:1 (2002), 46–65; Siberian Adv. Math., 13:2 (2003), 108–125

Citation in format AMSBIB
\Bibitem{Zhd02}
\by A.~I.~Zhdanok
\paper Finitely Additive Measures in the~Ergodic Theory of Markov Chains.~II
\jour Mat. Tr.
\yr 2002
\vol 5
\issue 1
\pages 46--65
\mathnet{http://mi.mathnet.ru/mt98}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1918894}
\zmath{https://zbmath.org/?q=an:1046.60069|1036.60064}
\transl
\jour Siberian Adv. Math.
\yr 2003
\vol 13
\issue 2
\pages 108--125


Linking options:
  • http://mi.mathnet.ru/eng/mt98
  • http://mi.mathnet.ru/eng/mt/v5/i1/p46

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. A. I. Zhdanok, “Gamma-compactification of measurable spaces”, Siberian Math. J., 44:3 (2003), 463–476  mathnet  crossref  mathscinet  zmath  isi
    2. A. E. Gutman, A. I. Sotnikov, “Order properties of the space of finitely additive transition functions”, Siberian Math. J., 45:1 (2004), 69–85  mathnet  crossref  mathscinet  zmath  isi  elib
  • Математические труды Siberian Advances in Mathematics
    Number of views:
    This page:460
    Full text:138
    References:49
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022