RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Vopr. Kriptogr., 2016, Volume 7, Issue 4, Pages 81–94 (Mi mvk205)  

This article is cited in 1 scientific paper (total in 1 paper)

On the asymptotic normality of frequencies of values in the non-equiprobable multi-cyclic random sequence modulo 4

N. M. Mezhennayaa, V. G. Mikhailovb

a Bauman State Technical University, Moscow
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: For the frequencies of values on the cycle of the non-equiprobable multi-cyclic random sequence modulo 4 we obtain the conditions of asymptotic normality.

Key words: non-equiprobable multi-cyclic random sequence, frequencies of values, asymptotic normality.

Funding Agency Grant Number
Russian Foundation for Basic Research 14-01-00318_а


DOI: https://doi.org/10.4213/mvk205

Full text: PDF file (166 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 519.212.2+519.214
Received 19.II.2016

Citation: N. M. Mezhennaya, V. G. Mikhailov, “On the asymptotic normality of frequencies of values in the non-equiprobable multi-cyclic random sequence modulo 4”, Mat. Vopr. Kriptogr., 7:4 (2016), 81–94

Citation in format AMSBIB
\Bibitem{MezMik16}
\by N.~M.~Mezhennaya, V.~G.~Mikhailov
\paper On the asymptotic normality of frequencies of values in the non-equiprobable multi-cyclic random sequence modulo~4
\jour Mat. Vopr. Kriptogr.
\yr 2016
\vol 7
\issue 4
\pages 81--94
\mathnet{http://mi.mathnet.ru/mvk205}
\crossref{https://doi.org/10.4213/mvk205}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3582409}
\elib{http://elibrary.ru/item.asp?id=28931407}


Linking options:
  • http://mi.mathnet.ru/eng/mvk205
  • https://doi.org/10.4213/mvk205
  • http://mi.mathnet.ru/eng/mvk/v7/i4/p81

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. M. Mezhennaya, V. G. Mikhailov, “On properties of output sequence of multi-cyclic generator over direct sum of residue groups modulo 2”, Discrete Math. Appl., 29:1 (2019), 15–21  mathnet  crossref  crossref  isi  elib
  • Математические вопросы криптографии
    Number of views:
    This page:127
    Full text:37
    References:22
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019