RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Vopr. Kriptogr., 2019, Volume 10, Issue 4, Pages 25–51 (Mi mvk306)  

Methods of construction of skew linear recurrent sequences with maximal period based on the Galois polynomials factorization in the ring of matrix polynomials

M. A. Goltvanitsa

LLC "Certification Research Center", Moscow

Abstract: Let $p$ be a prime, $R=\mathrm{GR}(q^d,p^d)$ be a Galois ring of cardinality $q^d$ and characteristic $p^d$, where $q=p^r$, $S=\mathrm{GR}(q^{nd},p^d)$ be an $R$-extension of degree $n$ and $\check{S}$ be an endomorphism ring of the module $_RS$. A sequence $v$ over $S$ with the recursion law
$$ \forall i\in\mathbb{N}_0 :\;\;\;v(i+m)=
psi_{m-1}(v(i+m-1))+...+\psi_0(v(i)),\;\;\;\psi_0,...,\psi_{m-1}\in \check{S},$$
is called a skew LRS over $S$ with a characteristic polynomial $\Psi(x) = x^m - \sum_{j=0}^{m-1}\psi_jx^j$. The maximal period $T(v)$ of such sequence equals $\tau = (q^{mn}-1)p^{d-1}$. In this article we propose some new methods for construction the polynomials $\Psi(x)$, which define the recursion laws of skew linear recurrent sequences of maximal period. These methods are based on the search in $\check{S}[x]$ the divisors for classic Galois polynomials of period $\tau$ over $R$.

Key words: Galois ring, Frobenius automorphism, ML-sequence, skew LRS, matrix polynomial, factorization.

DOI: https://doi.org/10.4213/mvk306

Full text: PDF file (283 kB)
First page: PDF file
References: PDF file   HTML file

UDC: 519.113.6+512.714+519.719.2
Received 29.IV.2019

Citation: M. A. Goltvanitsa, “Methods of construction of skew linear recurrent sequences with maximal period based on the Galois polynomials factorization in the ring of matrix polynomials”, Mat. Vopr. Kriptogr., 10:4 (2019), 25–51

Citation in format AMSBIB
\Bibitem{Gol19}
\by M.~A.~Goltvanitsa
\paper Methods of construction of skew linear recurrent sequences with maximal period based on the Galois polynomials factorization in the ring of matrix polynomials
\jour Mat. Vopr. Kriptogr.
\yr 2019
\vol 10
\issue 4
\pages 25--51
\mathnet{http://mi.mathnet.ru/mvk306}
\crossref{https://doi.org/10.4213/mvk306}


Linking options:
  • http://mi.mathnet.ru/eng/mvk306
  • https://doi.org/10.4213/mvk306
  • http://mi.mathnet.ru/eng/mvk/v10/i4/p25

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические вопросы криптографии
    Number of views:
    This page:49
    References:5
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020