Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Vopr. Kriptogr., 2020, Volume 11, Issue 2, Pages 83–98 (Mi mvk323)  

This article is cited in 2 scientific papers (total in 2 papers)

Linear and differential cryptanalysis: Another viewpoint

F. M. Malysheva, A. E. Trishinb

a Steklov Mathematical Institute of RAS, Moscow
b Certification Research Center LLC, Moscow

Abstract: Theorems on the exact values of advantages for linear and differential cryptanalysis are proved. The example of universal functional scheme illustrates a wide range of possible errors when the usual methods of estimation the advantages of probabilistic relations are used. It is argued that the probabilistic relations should be constructed for fixed cipher keys separately. The duality between the linear and the differential cryptanalysis is rigorously formulated. The degree of diffusion in linear medium is introduced; it is shown that its maximization should be one of the basic principles of cipher design. This is a quantitative measure of Shannon's qualitative principle that ciphers should realize transforms with high diffusion.

Key words: linear cryptanalysis, differential cryptanalysis, linear medium, block ciphers.

DOI: https://doi.org/10.4213/mvk323

Full text: PDF file (415 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 519.719.2
Received 25.XI.2019
Language:

Citation: F. M. Malyshev, A. E. Trishin, “Linear and differential cryptanalysis: Another viewpoint”, Mat. Vopr. Kriptogr., 11:2 (2020), 83–98

Citation in format AMSBIB
\Bibitem{MalTri20}
\by F.~M.~Malyshev, A.~E.~Trishin
\paper Linear and differential cryptanalysis: Another viewpoint
\jour Mat. Vopr. Kriptogr.
\yr 2020
\vol 11
\issue 2
\pages 83--98
\mathnet{http://mi.mathnet.ru/mvk323}
\crossref{https://doi.org/10.4213/mvk323}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4187004}


Linking options:
  • http://mi.mathnet.ru/eng/mvk323
  • https://doi.org/10.4213/mvk323
  • http://mi.mathnet.ru/eng/mvk/v11/i2/p83

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Kiryukhin, “An algorithm for computing the upper bound for non-minimum weight differentials in 2-round LSX-ciphers”, Matem. vopr. kriptogr., 12:2 (2021), 93–109  mathnet  crossref
    2. D. A. Burov, “O svoistvakh rasseivaniya operatsii modulnogo slozheniya po sistemam imprimitivnosti gruppy sdvigov dvoichnogo vektornogo prostranstva”, Diskret. matem., 33:3 (2021), 3–40  mathnet  crossref
  • Математические вопросы криптографии
    Number of views:
    This page:93
    Full text:44
    References:8
    First page:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021