RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2000, Volume 68, Issue 6, Pages 819–829 (Mi mz1004)  

This article is cited in 7 scientific papers (total in 7 papers)

Properties of the Absolute That Affect Smoothness of Flows on Closed Surfaces

S. Kh. Aranson, E. V. Zhuzhoma

Nizhny Novgorod State Technical University

Abstract: Let $M^2_g$ be a closed orientable surface of genus $g\ge2$, endowed with the structure of a Riemann manifold of constant negative curvature. For the universal covering $\Delta$, there is the notion of absolute, each of whose points determines an asymptotic direction of a bundle of parallel equidirected geodesics. In the paper it is proved that there is a set $U_g$ on the absolute having the cardinality of the continuum and such that if an arbitrary flow on $M^2_g$ has a semitrajectory whose covering has asymptotic direction defined by a point from $U_g$, then this flow is not analytical and has infinitely many stationary points.

DOI: https://doi.org/10.4213/mzm1004

Full text: PDF file (246 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2000, 68:6, 695–703

Bibliographic databases:

UDC: 517.917+513.9
Received: 01.03.2000

Citation: S. Kh. Aranson, E. V. Zhuzhoma, “Properties of the Absolute That Affect Smoothness of Flows on Closed Surfaces”, Mat. Zametki, 68:6 (2000), 819–829; Math. Notes, 68:6 (2000), 695–703

Citation in format AMSBIB
\Bibitem{AraZhu00}
\by S.~Kh.~Aranson, E.~V.~Zhuzhoma
\paper Properties of the Absolute That Affect Smoothness of Flows on Closed Surfaces
\jour Mat. Zametki
\yr 2000
\vol 68
\issue 6
\pages 819--829
\mathnet{http://mi.mathnet.ru/mz1004}
\crossref{https://doi.org/10.4213/mzm1004}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1835180}
\zmath{https://zbmath.org/?q=an:1042.37013}
\elib{http://elibrary.ru/item.asp?id=13703302}
\transl
\jour Math. Notes
\yr 2000
\vol 68
\issue 6
\pages 695--703
\crossref{https://doi.org/10.1023/A:1026696213559}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000166684000020}


Linking options:
  • http://mi.mathnet.ru/eng/mz1004
  • https://doi.org/10.4213/mzm1004
  • http://mi.mathnet.ru/eng/mz/v68/i6/p819

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Aranson, SK, “The influence of the absolute on the local and smooth properties of foliations and homeomorphisms with invariant foliations on closed surfaces”, Doklady Mathematics, 64:1 (2001), 25  mathscinet  zmath  isi
    2. S. Kh. Aranson, E. V. Zhuzhoma, “On asymptotic directions of semitrajectories of analytic flows on surfaces”, Russian Math. Surveys, 57:6 (2002), 1207–1209  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. D. V. Anosov, “Flows on Closed Surfaces and Related Geometrical Questions”, Proc. Steklov Inst. Math., 236 (2002), 12–18  mathnet  mathscinet  zmath
    4. D. V. Anosov, E. V. Zhuzhoma, “Asymptotic Behavior of Covering Curves on the Universal Coverings of Surfaces”, Proc. Steklov Inst. Math., 238 (2002), 1–46  mathnet  mathscinet  zmath
    5. S. Kh. Aranson, E. V. Zhuzhoma, “Nonlocal Properties of Analytic Flows on Closed Orientable Surfaces”, Proc. Steklov Inst. Math., 244 (2004), 2–17  mathnet  mathscinet  zmath
    6. D. V. Anosov, E. V. Zhuzhoma, “Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings”, Proc. Steklov Inst. Math., 249 (2005), 1–221  mathnet  mathscinet  zmath
    7. Grines V. Zhuzhoma E., “Around Anosov-Weil Theory”, Modern Theory of Dynamical Systems: a Tribute to Dmitry Victorovich Anosov, Contemporary Mathematics, 692, ed. Katok A. Pesin Y. Hertz F., Amer Mathematical Soc, 2017, 123–154  crossref  mathscinet  zmath  isi  scopus  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:223
    Full text:88
    References:39
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020