RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1983, Volume 33, Issue 3, Pages 393–408 (Mi mz10091)  

This article is cited in 2 scientific papers (total in 2 papers)

Approximation of a class of differentiable functions by $\mathscr{L}$-splines

S. I. Novikov

Institute of Mathematics and Mechanics, Ural Science Center, Academy of Sciences of the USSR

Full text: PDF file (2468 kB)

English version:
Mathematical Notes, 1983, 33:3, 200–208

Bibliographic databases:

UDC: 517.5
Received: 05.01.1981

Citation: S. I. Novikov, “Approximation of a class of differentiable functions by $\mathscr{L}$-splines”, Mat. Zametki, 33:3 (1983), 393–408; Math. Notes, 33:3 (1983), 200–208

Citation in format AMSBIB
\Bibitem{Nov83}
\by S.~I.~Novikov
\paper Approximation of a class of differentiable functions by $\mathscr{L}$-splines
\jour Mat. Zametki
\yr 1983
\vol 33
\issue 3
\pages 393--408
\mathnet{http://mi.mathnet.ru/mz10091}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=698716}
\zmath{https://zbmath.org/?q=an:0549.41013}
\transl
\jour Math. Notes
\yr 1983
\vol 33
\issue 3
\pages 200--208
\crossref{https://doi.org/10.1007/BF01686327}


Linking options:
  • http://mi.mathnet.ru/eng/mz10091
  • http://mi.mathnet.ru/eng/mz/v33/i3/p393

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. V. Strelkova, V. T. Shevaldin, “On uniform Lebesgue constants of local exponential splines with equidistant knots”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 206–217  mathnet  crossref  mathscinet  isi  elib
    2. S. I. Novikov, “Lebesgue constants for some interpolational ${\mathcal L}$-splines”, Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 136–144  mathnet  crossref  crossref  mathscinet  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:87
    Full text:37
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020