Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2013, Volume 93, Issue 5, Pages 645–657 (Mi mz10107)  

This article is cited in 6 scientific papers (total in 6 papers)

Complete Riemannian Metrics with Holonomy Group $G_2$ on Deformations of Cones over $S^3\times S^3$

Ya. V. Bazaikin, O. A. Bogojavlenskaja

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: Complete Riemannian metrics with holonomy group $G_2$ on manifolds obtained by deformation of cones over $S^3 \times S^3$ are constructed.

Keywords: Riemannian metric, holonomy group $G_2$, metric on cones over $S^3 \times S^3$, vector bundle, Killing vector field.

DOI: https://doi.org/10.4213/mzm10107

Full text: PDF file (499 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2013, 93:5, 643–653

Bibliographic databases:

UDC: 514.763.3
Received: 08.06.2012
Revised: 26.06.2012

Citation: Ya. V. Bazaikin, O. A. Bogojavlenskaja, “Complete Riemannian Metrics with Holonomy Group $G_2$ on Deformations of Cones over $S^3\times S^3$”, Mat. Zametki, 93:5 (2013), 645–657; Math. Notes, 93:5 (2013), 643–653

Citation in format AMSBIB
\Bibitem{BazBog13}
\by Ya.~V.~Bazaikin, O.~A.~Bogojavlenskaja
\paper Complete Riemannian Metrics with Holonomy Group~$G_2$ on Deformations of Cones over $S^3\times S^3$
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 5
\pages 645--657
\mathnet{http://mi.mathnet.ru/mz10107}
\crossref{https://doi.org/10.4213/mzm10107}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3206014}
\zmath{https://zbmath.org/?q=an:06198905}
\elib{https://elibrary.ru/item.asp?id=20731722}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 5
\pages 643--653
\crossref{https://doi.org/10.1134/S0001434613050015}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000321274300001}
\elib{https://elibrary.ru/item.asp?id=20438754}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879739000}


Linking options:
  • http://mi.mathnet.ru/eng/mz10107
  • https://doi.org/10.4213/mzm10107
  • http://mi.mathnet.ru/eng/mz/v93/i5/p645

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Fowdar U., “S-1-Quotient of Spin(7)-Structures”, Ann. Glob. Anal. Geom.  crossref  mathscinet  isi
    2. O. A. Bogoyavlenskaya, “On a new family of complete $G_2$-holonomy Riemannian metrics on $S^3\times\mathbb R^4$”, Siberian Math. J., 54:3 (2013), 431–440  mathnet  crossref  mathscinet  isi
    3. E. G. Malkovich, “Noncompact Riemannian spaces with $G_2$, $Spin(7)$ and $Su(2m)$ holonomies”, Phys. Part. Nuclei, 45:3 (2014), 550–567  crossref  adsnasa  isi
    4. Kh. Zh. Kozhasov, “A geometric flow in the space of $G_2$-structures on the cone over $S^3\times S^3$”, Siberian Math. J., 56:6 (2015), 1093–1100  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Malkovich E.G., “A New Incomplete Ricci-Flat Metric”, Int. J. Geom. Methods Mod. Phys., 16:5 (2019), 1950077  crossref  isi
    6. Madsen T.B., Swann A., “Toric Geometry of G(2)-Manifolds”, Geom. Topol., 23:7 (2019), 3459–3500  crossref  mathscinet  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:412
    Full text:128
    References:45
    First page:42

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021