RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2013, Volume 93, Issue 1, Pages 72–80 (Mi mz10133)  

This article is cited in 1 scientific paper (total in 1 paper)

On Bohl's Argument Theorem

V. V. Kozlov

Steklov Mathematical Institute of the Russian Academy of Sciences

Abstract: The classical Bohl argument theorem of a conditionally periodic function is generalized. Conditionally periodic motions on a torus are replaced by the solutions of a nonlinear system of differential equations with invariant measure. Cases in which this system is assumed ergodic or strictly ergodic are considered.

Keywords: Bohl's argument theorem, conditionally periodic motion on the $n$-dimensional torus, (strictly) ergodic system of differential equations, uniformly distributed function, Birkhoff–Khinchine ergodic theorem

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation


DOI: https://doi.org/10.4213/mzm10133

Full text: PDF file (450 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2013, 93:1, 83–89

Bibliographic databases:

Document Type: Article
UDC: 517.518.6+531.01
Received: 06.08.2012

Citation: V. V. Kozlov, “On Bohl's Argument Theorem”, Mat. Zametki, 93:1 (2013), 72–80; Math. Notes, 93:1 (2013), 83–89

Citation in format AMSBIB
\Bibitem{Koz13}
\by V.~V.~Kozlov
\paper On Bohl's Argument Theorem
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 1
\pages 72--80
\mathnet{http://mi.mathnet.ru/mz10133}
\crossref{https://doi.org/10.4213/mzm10133}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3205949}
\zmath{https://zbmath.org/?q=an:06158164}
\elib{http://elibrary.ru/item.asp?id=20731661}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 1
\pages 83--89
\crossref{https://doi.org/10.1134/S0001434613010094}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000315582900009}
\elib{http://elibrary.ru/item.asp?id=20431912}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874561968}


Linking options:
  • http://mi.mathnet.ru/eng/mz10133
  • https://doi.org/10.4213/mzm10133
  • http://mi.mathnet.ru/eng/mz/v93/i1/p72

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Kozlov, “Liouville's equation as a Schrödinger equation”, Izv. Math., 78:4 (2014), 744–757  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:398
    Full text:59
    References:28
    First page:55

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019