RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2012, Volume 92, Issue 6, Pages 819–824 (Mi mz10147)  

This article is cited in 6 scientific papers (total in 6 papers)

A Boundary Function Method for Solving the Model Lighthill Equation with a Regular Singular Point

K. Alymkulov, A. A. Khalmatov


Abstract: We prove that it is possible to apply a method similar to the Vishik–Lyusternik–Vasileva–Imanaliev boundary function method for constructing the asymptotics of the solution of the model Lighthill equation with a regular singular point.

Keywords: model Lighthill equation, boundary function method, Cauchy problem, contraction operator, Lagrange inequality, Fréchet derivative

DOI: https://doi.org/10.4213/mzm10147

Full text: PDF file (398 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2012, 92:6, 751–755

Bibliographic databases:

UDC: 517.928
Received: 13.04.2011

Citation: K. Alymkulov, A. A. Khalmatov, “A Boundary Function Method for Solving the Model Lighthill Equation with a Regular Singular Point”, Mat. Zametki, 92:6 (2012), 819–824; Math. Notes, 92:6 (2012), 751–755

Citation in format AMSBIB
\Bibitem{AlyKha12}
\by K.~Alymkulov, A.~A.~Khalmatov
\paper A Boundary Function Method for Solving the Model Lighthill Equation with a Regular Singular Point
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 6
\pages 819--824
\mathnet{http://mi.mathnet.ru/mz10147}
\crossref{https://doi.org/10.4213/mzm10147}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201485}
\zmath{https://zbmath.org/?q=an:1267.34101}
\elib{https://elibrary.ru/item.asp?id=20731639}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 6
\pages 751--755
\crossref{https://doi.org/10.1134/S0001434612110193}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000314263900019}
\elib{https://elibrary.ru/item.asp?id=20484763}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871845886}


Linking options:
  • http://mi.mathnet.ru/eng/mz10147
  • https://doi.org/10.4213/mzm10147
  • http://mi.mathnet.ru/eng/mz/v92/i6/p819

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. A. Tursunov, U. Z. Erkebaev, “Asimptotika resheniya zadachi Dirikhle dlya bisingulyarno vozmuschennogo uravneniya v koltse”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 25:4 (2015), 517–525  mathnet  elib
    2. D. A. Tursunov, “Asimptoticheskoe razlozhenie resheniya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s tremya tochkami povorota”, Tr. IMM UrO RAN, 22, no. 1, 2016, 271–281  mathnet  mathscinet  elib
    3. K. Alymkulov, D. A. Tursunov, “On a method of construction of asymptotic decompositions of bisingular perturbed problems”, Russian Math. (Iz. VUZ), 60:12 (2016), 1–8  mathnet  crossref  isi
    4. D. A. Tursunov, U. Z. Erkebaev, E. A. Tursunov, “Asimptotika resheniya zadachi Dirikhle dlya koltsa s kvadratichnymi rostami na granitsakh”, Izv. IMI UdGU, 2016, no. 2(48), 73–81  mathnet  elib
    5. D. A. Tursunov, “The asymptotic solution of the three-band bisingularly problem”, Lobachevskii J. Math., 38:3, SI (2017), 542–546  crossref  mathscinet  zmath  isi  scopus
    6. K. G. Kozhobekov, D. A. Tursunov, “Asimptotika resheniya kraevoi zadachi, kogda predelnoe uravnenie imeet neregulyarnuyu osobuyu tochku”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:3 (2019), 332–340  mathnet  crossref
  • Математические заметки Mathematical Notes
    Number of views:
    This page:379
    Full text:96
    References:28
    First page:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020