RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2012, Volume 92, Issue 6, Pages 912–927 (Mi mz10150)  

Local Finitely Smooth Equivalence of Real Autonomous Systems with Two Pure Imaginary Eigenvalues

V. S. Samovol

National Research University "Higher School of Economics"

Abstract: The paper deals with real autonomous systems of ordinary differential equations in a neighborhood of a nondegenerate singular point such that the matrix of the linearized system has two pure imaginary eigenvalues, all other eigenvalues lying outside the imaginary axis. It is proved that, for such systems having a focus on the center manifold, the problem of finitely smooth equivalence is solved in terms of the finite segments of the Taylor series of their right-hand sides.

Keywords: autonomous system of ordinary differential equations, finitely smooth equivalence of systems, pseudonormal form, resonance, shearing transformation

DOI: https://doi.org/10.4213/mzm10150

Full text: PDF file (480 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2012, 92:6, 807–819

Bibliographic databases:

UDC: 517.91
Received: 06.10.2011

Citation: V. S. Samovol, “Local Finitely Smooth Equivalence of Real Autonomous Systems with Two Pure Imaginary Eigenvalues”, Mat. Zametki, 92:6 (2012), 912–927; Math. Notes, 92:6 (2012), 807–819

Citation in format AMSBIB
\Bibitem{Sam12}
\by V.~S.~Samovol
\paper Local Finitely Smooth Equivalence of Real Autonomous Systems with Two Pure Imaginary Eigenvalues
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 6
\pages 912--927
\mathnet{http://mi.mathnet.ru/mz10150}
\crossref{https://doi.org/10.4213/mzm10150}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3201492}
\zmath{https://zbmath.org/?q=an:06153815}
\elib{http://elibrary.ru/item.asp?id=20731650}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 6
\pages 807--819
\crossref{https://doi.org/10.1134/S0001434612110260}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000314263900026}
\elib{http://elibrary.ru/item.asp?id=20484590}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871840423}


Linking options:
  • http://mi.mathnet.ru/eng/mz10150
  • https://doi.org/10.4213/mzm10150
  • http://mi.mathnet.ru/eng/mz/v92/i6/p912

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:255
    Full text:89
    References:37
    First page:16

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020