RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2014, Volume 95, Issue 6, Pages 803–811 (Mi mz10250)  

The Resonance Theorem for Subspaces

E. I. Berezhnoi

P. G. Demidov Yaroslavl State University

Abstract: Under some additional assumptions on an unbounded sequence of operators and the geometry of the spaces, it is shown that, in the classical Banach–Steinhaus resonance theorem, the set of divergence contains an infinite-dimensional space, excluding zero.

Keywords: Banach–Steinhaus resonance theorem, Banach space, Banach couple, linear operator, set of divergence, Hahn–Banach theorem.

DOI: https://doi.org/10.4213/mzm10250

Full text: PDF file (440 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2014, 95:6, 753–759

Bibliographic databases:

UDC: 517.5+513.88
Received: 08.02.2013
Revised: 07.10.2013

Citation: E. I. Berezhnoi, “The Resonance Theorem for Subspaces”, Mat. Zametki, 95:6 (2014), 803–811; Math. Notes, 95:6 (2014), 753–759

Citation in format AMSBIB
\Bibitem{Ber14}
\by E.~I.~Berezhnoi
\paper The Resonance Theorem for Subspaces
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 6
\pages 803--811
\mathnet{http://mi.mathnet.ru/mz10250}
\crossref{https://doi.org/10.4213/mzm10250}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3306217}
\elib{http://elibrary.ru/item.asp?id=21826504}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 6
\pages 753--759
\crossref{https://doi.org/10.1134/S0001434614050186}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000338338200018}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903387472}


Linking options:
  • http://mi.mathnet.ru/eng/mz10250
  • https://doi.org/10.4213/mzm10250
  • http://mi.mathnet.ru/eng/mz/v95/i6/p803

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:286
    Full text:63
    References:30
    First page:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020