RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2018, Volume 104, Issue 5, Pages 680–693 (Mi mz10328)  

Algebraic Properties of the Modular Lambda Function

O. I. Gritsenko

Lomonosov Moscow State University

Abstract: Some properties of the modular lambda function that are similar to those of the modular invariant functions are proved. An algorithm for constructing the minimal polynomial for the values of the lambda function at the points of imaginary quadratic fields is presented; the numbers conjugate to these values are given.

Keywords: modular invariant, modular lambda function, minimal polynomial.

DOI: https://doi.org/10.4213/mzm10328

Full text: PDF file (493 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2018, 104:5, 666–677

Bibliographic databases:

Document Type: Article
UDC: 511.2
Received: 06.06.2013
Revised: 10.12.2017

Citation: O. I. Gritsenko, “Algebraic Properties of the Modular Lambda Function”, Mat. Zametki, 104:5 (2018), 680–693; Math. Notes, 104:5 (2018), 666–677

Citation in format AMSBIB
\Bibitem{Gri18}
\by O.~I.~Gritsenko
\paper Algebraic Properties of the Modular Lambda Function
\jour Mat. Zametki
\yr 2018
\vol 104
\issue 5
\pages 680--693
\mathnet{http://mi.mathnet.ru/mz10328}
\crossref{https://doi.org/10.4213/mzm10328}
\elib{http://elibrary.ru/item.asp?id=36361308}
\transl
\jour Math. Notes
\yr 2018
\vol 104
\issue 5
\pages 666--677
\crossref{https://doi.org/10.1134/S0001434618110068}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000454546800006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059226711}


Linking options:
  • http://mi.mathnet.ru/eng/mz10328
  • https://doi.org/10.4213/mzm10328
  • http://mi.mathnet.ru/eng/mz/v104/i5/p680

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:57
    References:6
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019