RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2013, Volume 94, Issue 6, Pages 828–845 (Mi mz10363)  

This article is cited in 4 scientific papers (total in 4 papers)

On the Simple Isotopy Class of a Source–Sink Diffeomorphism on the $3$-Sphere

V. Z. Grines, O. V. Pochinka

N. I. Lobachevski State University of Nizhni Novgorod

Abstract: The results obtained in this paper are related to the Palis–Pugh problem on the existence of an arc with finitely or countably many bifurcations which joins two Morse–Smale systems on a closed smooth manifold $M^n$. Newhouse and Peixoto showed that such an arc joining flows exists for any $n$ and, moreover, it is simple. However, there exist isotopic diffeomorphisms which cannot be joined by a simple arc. For $n=1$, this is related to the presence of the Poincaré rotation number, and for $n=2$, to the possible existence of periodic points of different periods and heteroclinic orbits. In this paper, for the dimension $n=3$, a new obstruction to the existence of a simple arc is revealed, which is related to the wild embedding of all separatrices of saddle points. Necessary and sufficient conditions for a Morse–Smale diffeomorphism on the $3$-sphere without heteroclinic intersections to be joined by a simple arc with a “source-sink” diffeomorphism are also found.

Keywords: isotopic diffeomorphisms, Morse–Smale diffeomorphism, source-sink diffeomorphism, wildly embedded separatrices, simple arc.

DOI: https://doi.org/10.4213/mzm10363

Full text: PDF file (745 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2013, 94:6, 862–875

Bibliographic databases:

UDC: 517.938
Received: 20.02.2013

Citation: V. Z. Grines, O. V. Pochinka, “On the Simple Isotopy Class of a Source–Sink Diffeomorphism on the $3$-Sphere”, Mat. Zametki, 94:6 (2013), 828–845; Math. Notes, 94:6 (2013), 862–875

Citation in format AMSBIB
\Bibitem{GriPoc13}
\by V.~Z.~Grines, O.~V.~Pochinka
\paper On the Simple Isotopy Class of a Source--Sink Diffeomorphism on the $3$-Sphere
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 6
\pages 828--845
\mathnet{http://mi.mathnet.ru/mz10363}
\crossref{https://doi.org/10.4213/mzm10363}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3227028}
\zmath{https://zbmath.org/?q=an:06274260}
\elib{http://elibrary.ru/item.asp?id=21276942}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 6
\pages 862--875
\crossref{https://doi.org/10.1134/S0001434613110230}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000329130000023}
\elib{http://elibrary.ru/item.asp?id=21904382}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891305625}


Linking options:
  • http://mi.mathnet.ru/eng/mz10363
  • https://doi.org/10.4213/mzm10363
  • http://mi.mathnet.ru/eng/mz/v94/i6/p828

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. Grines, O. Pochinka, E. Zhuzhoma, “On families of diffeomorphisms with bifurcations of attractive and repelling sets”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24:8 (2014), 1440015, 8 pp.  crossref  mathscinet  zmath  isi
    2. E. V. Nozdrinova, O. V. Pochinka, “On existence of a smooth arc without bifurcations joining source-sink diffeomorphisms on 2-sphere”, European Conference - Workshop Nonlinear Maps and Applications, Journal of Physics Conference Series, 990, IOP Publishing Ltd, 2018, UNSP 012010  crossref  isi
    3. V. Z. Grines, O. V. Pochinka, “Topological classification of global magnetic fields in the solar corona”, Dynam. Syst., 33:3 (2018), 536–546  crossref  mathscinet  zmath  isi  scopus
    4. E. Nozdrinova, “Rotation number as a complete topological invariant of a simple isotopic class of rough transformations of a circle”, Nelineinaya dinam., 14:4 (2018), 543–551  mathnet  crossref
  • Математические заметки Mathematical Notes
    Number of views:
    This page:243
    Full text:48
    References:36
    First page:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019