Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2014, Volume 96, Issue 6, Pages 827–848 (Mi mz10372)  

This article is cited in 5 scientific papers (total in 5 papers)

Best Mean-Square Approximations by Entire Functions of Exponential Type and Mean $\nu$-Widths of Classes of Functions on the Line

S. B. Vakarchuk

Alfred Nobel University Dnepropetrovsk

Abstract: For the classes $L^r_2(\mathbb{R})$, $r\in \mathbb{Z}_{+}$, we establish the upper and lower bounds for the quantities
$$ \chi_{\sigma,k,r,\mu,p}(\psi,t):=\sup\{\mathcal{A}_{\sigma} (f^{(r-\mu)})/(\int_0^t \omega^p_k(f^{(r)},\tau) \psi(\tau) d\tau)^{1/p}:f \in L^r_2(\mathbb{R})\}, $$
where $\mu, r \in \mathbb{Z}_{+}$, $\mu \le r$, $k \in \mathbb{N}$, $0< p \le 2$, $0< \sigma <\infty$, $0<t \le \pi/\sigma$, and $\psi$ is a nonnegative, measurable function summable on the closed interval $[0,t]$ and not equivalent to zero. In the cases $\chi_{\sigma,k,r,\mu,p}(1,t)$, where $\mu\in \mathbb{N}$, $1/\mu\le p \le 2$, and $\chi_{\sigma,k,r,\mu,2/k}(1,t)$, where $0<t \le \pi/(2 \sigma)$, we obtain the exact values of these quantities. We also obtain the exact values of the average $\nu$-widths of classes of functions defined in terms of the modulus of continuity $\omega^{*}$ and the majorant $\Psi$.

Keywords: entire function of exponential type, best mean-square approximation, average $\nu$-width, modulus of continuity, Jackson-type inequality, Fourier transform, Plancherel's theorem, Paley–Wiener theorem, Hölder's inequality, majorant, Kolmogorov width, Bernstein width, Bernstein's inequality.

DOI: https://doi.org/10.4213/mzm10372

Full text: PDF file (652 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2014, 96:6, 878–896

Bibliographic databases:

UDC: 517.5
Received: 09.08.2013
Revised: 10.12.2013

Citation: S. B. Vakarchuk, “Best Mean-Square Approximations by Entire Functions of Exponential Type and Mean $\nu$-Widths of Classes of Functions on the Line”, Mat. Zametki, 96:6 (2014), 827–848; Math. Notes, 96:6 (2014), 878–896

Citation in format AMSBIB
\Bibitem{Vak14}
\by S.~B.~Vakarchuk
\paper Best Mean-Square Approximations by Entire Functions of Exponential Type and Mean $\nu$-Widths of Classes of Functions on the Line
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 6
\pages 827--848
\mathnet{http://mi.mathnet.ru/mz10372}
\crossref{https://doi.org/10.4213/mzm10372}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3343642}
\zmath{https://zbmath.org/?q=an:06435055}
\elib{https://elibrary.ru/item.asp?id=22834448}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 6
\pages 878--896
\crossref{https://doi.org/10.1134/S000143461411025X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000347032700025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919897432}


Linking options:
  • http://mi.mathnet.ru/eng/mz10372
  • https://doi.org/10.4213/mzm10372
  • http://mi.mathnet.ru/eng/mz/v96/i6/p827

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. B. Vakarchuk, “On the moduli of continuity and fractional-order derivatives in the problems of best mean-square approximation by entire functions of the exponential type on the entire real axis”, Ukr. Math. J., 69:5 (2017), 696–724  crossref  mathscinet  isi  scopus
    2. R. Akgun, A. Ghorbanalizadeh, “Approximation by integral functions of finite degree in variable exponent Lebesgue spaces on the real axis”, Turk. J. Math., 42:4 (2018), 1887–1903  crossref  mathscinet  isi  scopus
    3. S. B. Vakarchuk, “Generalized characteristics of smoothness and some extreme problems of the approximation theory of functions in the space l-2(). Ii”, Ukr. Math. J., 70:10 (2019), 1550–1584  crossref  isi
    4. S. B. Vakarchuk, “Generalized characteristics of smoothness and some extreme problems of the approximation theory of functions in the space l-2(). I”, Ukr. Math. J., 70:9 (2019), 1345–1374  crossref  isi
    5. S. B. Vakarchuk, “On Estimates in $L_2(\mathbb{R})$ of Mean $\nu$-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of $\omega_{\mathcal{M}}$”, Math. Notes, 106:2 (2019), 191–202  mathnet  crossref  crossref  mathscinet  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:315
    Full text:130
    References:211
    First page:21

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022