RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2015, Volume 97, Issue 5, Pages 767–780 (Mi mz10396)  

This article is cited in 2 scientific papers (total in 2 papers)

On the Conjugacy Separability of Some Free Constructions of Groups by Root Classes of Finite Groups

E. V. Sokolov

Ivanovo State University

Abstract: Let $\mathcal{C}$ be an arbitrary class of groups which has the root property, consists of finite groups only, and contains at least one nonidentity group. It is proved that every extension of a free group by a $\mathcal{C}$-group is conjugacy $\mathcal{C}$-separable. It is also proved that, if $G$ is a free product of two conjugacy $\mathcal{C}$-separable groups with finite amalgamated subgroup or an HNN-extension of a conjugacy $\mathcal{C}$-separable group with finite associated subgroups, then the group $G$ is residually $\mathcal{C}$ if and only if it is conjugacy $\mathcal{C}$-separable.

Keywords: class of groups which has the root property, HNN-extension, free product with finite amalgamated subgroup, residually $\mathcal{C}$ group, conjugacy $\mathcal{C}$-separable group.

DOI: https://doi.org/10.4213/mzm10396

Full text: PDF file (489 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2015, 97:5, 779–790

Bibliographic databases:

Document Type: Article
UDC: 512.543
Received: 22.09.2013

Citation: E. V. Sokolov, “On the Conjugacy Separability of Some Free Constructions of Groups by Root Classes of Finite Groups”, Mat. Zametki, 97:5 (2015), 767–780; Math. Notes, 97:5 (2015), 779–790

Citation in format AMSBIB
\Bibitem{Sok15}
\by E.~V.~Sokolov
\paper On the Conjugacy Separability of Some Free Constructions of Groups by Root Classes of Finite Groups
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 5
\pages 767--780
\mathnet{http://mi.mathnet.ru/mz10396}
\crossref{https://doi.org/10.4213/mzm10396}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3370560}
\elib{http://elibrary.ru/item.asp?id=23421563}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 5
\pages 779--790
\crossref{https://doi.org/10.1134/S0001434615050132}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000357050200013}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84933526971}


Linking options:
  • http://mi.mathnet.ru/eng/mz10396
  • https://doi.org/10.4213/mzm10396
  • http://mi.mathnet.ru/eng/mz/v97/i5/p767

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. A. Tumanova, “On the root-class residuality of generalized free products with a normal amalgamation”, Russian Math. (Iz. VUZ), 59:10 (2015), 23–37  mathnet  crossref
    2. E. V. Sokolov, E. A. Tumanova, “Sufficient conditions for the root-class residuality of certain generalized free products”, Siberian Math. J., 57:1 (2016), 135–144  mathnet  crossref  crossref  mathscinet  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:124
    Full text:6
    References:12
    First page:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019