RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2015, Volume 98, Issue 2, Pages 247–257 (Mi mz10415)  

This article is cited in 1 scientific paper (total in 1 paper)

On Effective $\sigma$-Boundedness and $\sigma$-Compactness in Solovay's Model

V. G. Kanovei, V. A. Lyubetskii

A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow

Abstract: Two dichotomy theorems on the effective $\sigma$-boundedness and effective $\sigma$-compactness of ordinal definable point sets in Solovay's model are proved.

Keywords: Solovay's model, effective $\sigma$-boundedness, effective $\sigma$-compactness, descriptive set theory.

Funding Agency Grant Number
Russian Foundation for Basic Research 13-01-00006
Russian Science Foundation 14-50-00150
The work of the first author was supported by the Russian Foundation for Basic Research under grant 13-01-00006 and that of the second author, by the Russian Science Foundation under grant 14-50-00150.


DOI: https://doi.org/10.4213/mzm10415

Full text: PDF file (594 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2015, 98:2, 273–282

Bibliographic databases:

Document Type: Article
UDC: 510.225
Received: 27.09.2013
Revised: 03.03.2015

Citation: V. G. Kanovei, V. A. Lyubetskii, “On Effective $\sigma$-Boundedness and $\sigma$-Compactness in Solovay's Model”, Mat. Zametki, 98:2 (2015), 247–257; Math. Notes, 98:2 (2015), 273–282

Citation in format AMSBIB
\Bibitem{KanLyu15}
\by V.~G.~Kanovei, V.~A.~Lyubetskii
\paper On Effective $\sigma$-Boundedness and $\sigma$-Compactness in Solovay's Model
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 2
\pages 247--257
\mathnet{http://mi.mathnet.ru/mz10415}
\crossref{https://doi.org/10.4213/mzm10415}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3438479}
\elib{http://elibrary.ru/item.asp?id=24073733}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 2
\pages 273--282
\crossref{https://doi.org/10.1134/S0001434615070299}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000360070400029}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940102194}


Linking options:
  • http://mi.mathnet.ru/eng/mz10415
  • https://doi.org/10.4213/mzm10415
  • http://mi.mathnet.ru/eng/mz/v98/i2/p247

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Lyubetsky V.A., Seliverstov A.V., “A novel algorithm for solution of a combinatory set partitioning problem”, J. Commun. Technol. Electron., 61:6 (2016), 705–708  crossref  isi  elib  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:168
    Full text:5
    References:18
    First page:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018