RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2014, Volume 96, Issue 4, Pages 609–622 (Mi mz10442)  

This article is cited in 6 scientific papers (total in 6 papers)

Circular Proofs for the Gödel–Löb Provability Logic

D. S. Shamkanovab

a Steklov Mathematical Institute of the Russian Academy of Sciences
b National Research University "Higher School of Economics", Moscow

Abstract: Sequent calculus for the provability logic $\mathsf{GL}$ is considered, in which provability is based on the notion of a circular proof. Unlike ordinary derivations, circular proofs are represented by graphs allowed to contain cycles, rather than by finite trees. Using this notion, we obtain a syntactic proof of the Lyndon interpolation property for $\mathsf{GL}$.

Keywords: provability logic, sequent calculus, circular proof, the Gödel–Löb logic, the Lyndon interpolation property, split sequent.

Funding Agency Grant Number
Russian Foundation for Basic Research 11-01-00281-а
11-01-00947-а
12-01-00888-а
Ministry of Education and Science of the Russian Federation НШ-5593.2012.1


DOI: https://doi.org/10.4213/mzm10442

Full text: PDF file (498 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2014, 96:4, 575–585

Bibliographic databases:

Document Type: Article
UDC: 510.6
Received: 16.12.2013
Revised: 20.03.2014

Citation: D. S. Shamkanov, “Circular Proofs for the Gödel–Löb Provability Logic”, Mat. Zametki, 96:4 (2014), 609–622; Math. Notes, 96:4 (2014), 575–585

Citation in format AMSBIB
\Bibitem{Sha14}
\by D.~S.~Shamkanov
\paper Circular Proofs for the G\"odel--L\"ob Provability Logic
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 4
\pages 609--622
\mathnet{http://mi.mathnet.ru/mz10442}
\crossref{https://doi.org/10.4213/mzm10442}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3344339}
\zmath{https://zbmath.org/?q=an:06435023}
\elib{http://elibrary.ru/item.asp?id=22834425}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 4
\pages 575--585
\crossref{https://doi.org/10.1134/S0001434614090326}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000344334500032}
\elib{http://elibrary.ru/item.asp?id=24945627}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920142631}


Linking options:
  • http://mi.mathnet.ru/eng/mz10442
  • https://doi.org/10.4213/mzm10442
  • http://mi.mathnet.ru/eng/mz/v96/i4/p609

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. S. Shamkanov, “A realization theorem for the Gödel-Löb provability logic”, Sb. Math., 207:9 (2016), 1344–1360  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. S. L. Kuznetsov, “On translating Lambek grammars with one division into context-free grammars”, Proc. Steklov Inst. Math., 294 (2016), 129–138  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    3. B. Afshari, G. E. Leigh, “Cut-free completeness for modal $\mu$-calculus”, 2017 32nd Annual Acm/IEEE Symposium on Logic in Computer Science (LICS), IEEE Symposium on Logic in Computer Science, IEEE, 2017  mathscinet  isi
    4. S. Kuznetsov, “The Lambek calculus with iteration: two variants”, Logic, Language, Information, and Computation, WoLLIC 2017 (London, UK, July 18–21, 2017), Lecture Notes in Computer Science, 10388, eds. J. Kennedy, R. DeQueiroz, Springer International Publishing Ag, 2017, 182–198  crossref  mathscinet  zmath  isi  scopus
    5. Yu. Savateev, D. Shamkanov, “Cut-elimination for the modal Grzegorczyk logic via non-well-founded proofs”, Logic, Language, Information, and Computation, WoLLIC 2017 (London, UK, July 18–21, 2017), Lecture Notes in Computer Science, 10388, eds. J. Kennedy, R. DeQueiroz, Springer International Publishing Ag, 2017, 321–335  crossref  mathscinet  zmath  isi  scopus
    6. D. Shamkanov, “Global neighbourhood completeness of the Gödel-Lob provability logic”, Logic, Language, Information, and Computation, WoLLIC 2017 (London, UK, July 18–21, 2017), Lecture Notes in Computer Science, 10388, eds. J. Kennedy, R. DeQueiroz, Springer International Publishing Ag, 2017, 358–370  crossref  mathscinet  zmath  isi  scopus
  • Математические заметки Mathematical Notes
    Number of views:
    This page:293
    Full text:21
    References:25
    First page:31

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019