|
This article is cited in 3 scientific papers (total in 3 papers)
Brief Communications
On the Asymmetry of the Past and the Future of the Ergodic $\mathbb{Z}$-Action
I. Yaroslavtsev
Keywords:
ergodic transformation, $\mathbb{Z}$-action, asymmetry of transformations, nonisomorphic transformations.
DOI:
https://doi.org/10.4213/mzm10448
Full text:
PDF file (275 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 2014, 95:3, 438–440
Bibliographic databases:
Received: 11.12.2013
Citation:
I. Yaroslavtsev, “On the Asymmetry of the Past and the Future of the Ergodic $\mathbb{Z}$-Action”, Mat. Zametki, 95:3 (2014), 479–480; Math. Notes, 95:3 (2014), 438–440
Citation in format AMSBIB
\Bibitem{Yar14}
\by I.~Yaroslavtsev
\paper On the Asymmetry of the Past and the Future of the Ergodic $\mathbb{Z}$-Action
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 3
\pages 479--480
\mathnet{http://mi.mathnet.ru/mz10448}
\crossref{https://doi.org/10.4213/mzm10448}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3223964}
\elib{https://elibrary.ru/item.asp?id=21276997}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 3
\pages 438--440
\crossref{https://doi.org/10.1134/S0001434614030158}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000335457300015}
\elib{https://elibrary.ru/item.asp?id=21874667}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899691891}
Linking options:
http://mi.mathnet.ru/eng/mz10448https://doi.org/10.4213/mzm10448 http://mi.mathnet.ru/eng/mz/v95/i3/p479
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. V. Ryzhikov, “On the Asymmetry of Multiple Asymptotic Properties of Ergodic Actions”, Math. Notes, 96:3 (2014), 416–422
-
S. V. Tikhonov, “On the Absence of Multiple Mixing and on the Centralizer of Measure-Preserving Actions”, Math. Notes, 97:4 (2015), 652–656
-
I. V. Klimov, “Simple Spectrum of Tensor Products and Typical Properties of Measure-Preserving Flows”, Math. Notes, 104:6 (2018), 927–929
|
Number of views: |
This page: | 226 | Full text: | 48 | References: | 35 | First page: | 35 |
|