|
This article is cited in 1 scientific paper (total in 2 paper)
On $n$-Term Approximations with Respect to Frames Bounded in $L^p(0,1)$, $2<p<\infty$
B. S. Kashina, A. V. Meleshkinab a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b M. V. Lomonosov Moscow State University
Abstract:
In this paper, best canonical $n$-term approximations in the norm of the spaces $L^2(0,1)$ of the family $\mathbb I$ of characteristic functions of intervals are studied.
Keywords:
best canonical $n$-term approximation, tight frame, Haar system, Bessel's inequality, Rademacher function, Khinchine's inequality.
DOI:
https://doi.org/10.4213/mzm10456
Full text:
PDF file (438 kB)
References:
PDF file
HTML file
English version:
Mathematical Notes, 2014, 95:6, 775–779
Bibliographic databases:
UDC:
517.518.8 Received: 26.12.2013
Citation:
B. S. Kashin, A. V. Meleshkina, “On $n$-Term Approximations with Respect to Frames Bounded in $L^p(0,1)$, $2<p<\infty$”, Mat. Zametki, 95:6 (2014), 830–835; Math. Notes, 95:6 (2014), 775–779
Citation in format AMSBIB
\Bibitem{KasMel14}
\by B.~S.~Kashin, A.~V.~Meleshkina
\paper On $n$-Term Approximations with Respect to Frames Bounded in $L^p(0,1)$, $2<p<\infty$
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 6
\pages 830--835
\mathnet{http://mi.mathnet.ru/mz10456}
\crossref{https://doi.org/10.4213/mzm10456}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3306220}
\elib{https://elibrary.ru/item.asp?id=21826507}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 6
\pages 775--779
\crossref{https://doi.org/10.1134/S0001434614050216}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000338338200021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903380829}
Linking options:
http://mi.mathnet.ru/eng/mz10456https://doi.org/10.4213/mzm10456 http://mi.mathnet.ru/eng/mz/v95/i6/p830
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Erratum
This publication is cited in the following articles:
-
A. V. Meleshkina, “Fourier Coefficients of Characteristic Functions of Intervals with Respect to a Complete Orthonormal System Bounded in $L^p([0,1])$, $2<p<\infty$”, Math. Notes, 97:4 (2015), 647–651
-
B. S. Kashin, A. V. Meleshkina, “Letter to the Editor”, Math. Notes, 101:4 (2017), 751–751
|
Number of views: |
This page: | 502 | Full text: | 90 | References: | 46 | First page: | 65 |
|