RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2015, Volume 97, Issue 5, Pages 681–698 (Mi mz10508)  

This article is cited in 9 scientific papers (total in 9 papers)

Solvability of the Thermoviscoelasticity Problem for Linearly Elastically Retarded Voigt Fluid

A. V. Zvyagin, V. P. Orlov

Voronezh State University

Abstract: The paper deals with the existence of a weak solution to the initial boundary-value thermoviscoelasticity problem for a mathematical model describing the flow of linearly elastically retarded Voigt fluid.

Keywords: thermoviscoelasticity problem, Leray–Schauder degree theory, Voigt fluid, initial boundary-value problem, Banach space.

Funding Agency Grant Number
Russian Foundation for Basic Research 13-01-00041
14-01-31228
Russian Science Foundation 14-21-00066
Ministry of Education and Science of the Russian Federation 1.1539.2014/K
This work was supported by the Russian Foundation for Basic Research (grants no. 13-01-00041 and no. 14-01-31228), by the Russian Science Foundation (grant no. 14-21-00066), and by the Ministry of Education and Science of the Russian Federation (grant no. 1.1539.2014/K).


DOI: https://doi.org/10.4213/mzm10508

Full text: PDF file (548 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2015, 97:5, 694–708

Bibliographic databases:

Document Type: Article
UDC: 517
Received: 19.05.2014
Revised: 10.09.2014

Citation: A. V. Zvyagin, V. P. Orlov, “Solvability of the Thermoviscoelasticity Problem for Linearly Elastically Retarded Voigt Fluid”, Mat. Zametki, 97:5 (2015), 681–698; Math. Notes, 97:5 (2015), 694–708

Citation in format AMSBIB
\Bibitem{ZvyOrl15}
\by A.~V.~Zvyagin, V.~P.~Orlov
\paper Solvability of the Thermoviscoelasticity Problem for Linearly Elastically Retarded Voigt Fluid
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 5
\pages 681--698
\mathnet{http://mi.mathnet.ru/mz10508}
\crossref{https://doi.org/10.4213/mzm10508}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3370554}
\elib{http://elibrary.ru/item.asp?id=23421557}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 5
\pages 694--708
\crossref{https://doi.org/10.1134/S0001434615050053}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000357050200005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84933564614}


Linking options:
  • http://mi.mathnet.ru/eng/mz10508
  • https://doi.org/10.4213/mzm10508
  • http://mi.mathnet.ru/eng/mz/v97/i5/p681

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. G. Zvyagin, V. P. Orlov, “On the Parabolic Problem of Motion of Thermoviscoelastic Media”, Math. Notes, 99:3 (2016), 465–469  mathnet  crossref  crossref  mathscinet  isi  elib
    2. A. V. Zvyagin, “Solvability of thermoviscoelastic problem for Leray alpha-model”, Russian Math. (Iz. VUZ), 60:10 (2016), 59–63  mathnet  crossref  isi
    3. V. G. Zvyagin, V. P. Orlov, “On a model of thermoviscoelasticity of Jeffreys–Oldroyd type”, Comput. Math. Math. Phys., 56:10 (2016), 1803–1812  mathnet  crossref  crossref  isi  elib
    4. A. V. Zvyagin, “Optimal feedback control for a thermoviscoelastic model of Voigt fluid motion”, Dokl. Math., 93:3 (2016), 270–272  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    5. V. G. Zvyagin, V. P. Orlov, “Solvability of a parabolic problem with non-smooth data”, J. Math. Anal. Appl., 453:1 (2017), 589–606  crossref  mathscinet  zmath  isi  scopus
    6. A. V. Zvyagin, “Weak solvability of Kelvin–Voigt model of thermoviscoelasticity”, Russian Math. (Iz. VUZ), 62:3 (2018), 79–83  mathnet  crossref  zmath  isi  elib
    7. Zvyagin A., “Solvability of One Class of Thermo-Visco-Elastic-Models”, AIP Conference Proceedings, 1997, eds. Ashyralyev A., Lukashov A., Sadybekov M., Amer Inst Physics, 2018, UNSP 020078-1  crossref  isi  scopus
    8. V. G. Zvyagin, A. V. Zvyagin, “Optimalnoe upravlenie s obratnoi svyazyu dlya termovyazkouprugoi modeli dvizheniya vodnykh rastvorov polimerov”, Matem. tr., 21:2 (2018), 181–203  mathnet  crossref
    9. A. V. Zvyagin, “Study of solvability of a thermoviscoelastic model describing the motion of weakly concentrated water solutions of polymers”, Siberian Math. J., 59:5 (2018), 843–859  mathnet  crossref  crossref  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:234
    Full text:11
    References:48
    First page:62

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019