Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2014, Volume 96, Issue 4, Pages 504–511 (Mi mz10529)  

On a Method for Deriving Formulas for the Jacobi Theta Functions

S. E. Gladun

Cherkassy

Abstract: A new method for deriving formulas for the Jacobi theta functions is considered.

Keywords: Jacobi theta function, Laurent series, Ramanujan's generalized theta function.

DOI: https://doi.org/10.4213/mzm10529

Full text: PDF file (419 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2014, 96:4, 484–490

Bibliographic databases:

UDC: 517.583
Received: 17.09.2013

Citation: S. E. Gladun, “On a Method for Deriving Formulas for the Jacobi Theta Functions”, Mat. Zametki, 96:4 (2014), 504–511; Math. Notes, 96:4 (2014), 484–490

Citation in format AMSBIB
\Bibitem{Gla14}
\by S.~E.~Gladun
\paper On a Method for Deriving Formulas for the Jacobi Theta Functions
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 4
\pages 504--511
\mathnet{http://mi.mathnet.ru/mz10529}
\crossref{https://doi.org/10.4213/mzm10529}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3344325}
\zmath{https://zbmath.org/?q=an:06435014}
\elib{https://elibrary.ru/item.asp?id=22834416}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 4
\pages 484--490
\crossref{https://doi.org/10.1134/S0001434614090235}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000344334500023}
\elib{https://elibrary.ru/item.asp?id=24945925}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920918923}


Linking options:
  • http://mi.mathnet.ru/eng/mz10529
  • https://doi.org/10.4213/mzm10529
  • http://mi.mathnet.ru/eng/mz/v96/i4/p504

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:222
    Full text:117
    References:41
    First page:16

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021