RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2017, Volume 101, Issue 2, Pages 186–198 (Mi mz10614)  

Triviality of Bounded Solutions of the Stationary Ginzburg–Landau Equation on Spherically Symmetric Manifolds

S. S. Vikharev, A. G. Losev

Volgograd State University

Abstract: In this paper, we obtain conditions for the validity of Liouville-type theorems on the triviality of bounded solutions of an elliptic inequality of special form as well as of the stationary Ginzburg–Landau equation for noncompact spherically symmetric Riemannian manifolds.

Keywords: Liouville's theorem, noncompact Riemannian manifold, stationary Ginzburg–Landau equation.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-41-02479-р_поволжье_а
This work was supported by the Russian Foundation for Basic Research under grant no. 15-41-02479-r_Povolzh'e_a.


DOI: https://doi.org/10.4213/mzm10614

Full text: PDF file (525 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2017, 101:2, 208–218

Bibliographic databases:

UDC: 517.95
Received: 30.06.2014
Revised: 01.11.2015

Citation: S. S. Vikharev, A. G. Losev, “Triviality of Bounded Solutions of the Stationary Ginzburg–Landau Equation on Spherically Symmetric Manifolds”, Mat. Zametki, 101:2 (2017), 186–198; Math. Notes, 101:2 (2017), 208–218

Citation in format AMSBIB
\Bibitem{VikLos17}
\by S.~S.~Vikharev, A.~G.~Losev
\paper Triviality of Bounded Solutions of the Stationary Ginzburg--Landau Equation on Spherically Symmetric Manifolds
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 2
\pages 186--198
\mathnet{http://mi.mathnet.ru/mz10614}
\crossref{https://doi.org/10.4213/mzm10614}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3608017}
\elib{http://elibrary.ru/item.asp?id=28172140}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 2
\pages 208--218
\crossref{https://doi.org/10.1134/S0001434617010254}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000396392700025}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015656549}


Linking options:
  • http://mi.mathnet.ru/eng/mz10614
  • https://doi.org/10.4213/mzm10614
  • http://mi.mathnet.ru/eng/mz/v101/i2/p186

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:266
    References:41
    First page:44

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020