RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2016, Volume 99, Issue 2, Pages 171–180 (Mi mz10617)  

This article is cited in 3 scientific papers (total in 3 papers)

Global Solvability of Initial Boundary-Value Problems for Nonlinear Analogs of the Boussinesq Equation

Sh. Amirova, A. I. Kozhanovbc

a Karabük University, Turkey
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
c Novosibirsk State University

Abstract: The solvability of the natural (first, second, and mixed) initial boundary-value problems for nonlinear analogs of the Boussinesq equation is studied. Uniqueness theorems for regular solutions and global solvability theorems are proved.

Keywords: Boussinesq equation, initial boundary-value problem, uniqueness theorem, global solvability, Hölder's inequality, Young's inequality, Gronwall–Bellman lemma.

DOI: https://doi.org/10.4213/mzm10617

Full text: PDF file (452 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2016, 99:2, 183–191

Bibliographic databases:

UDC: 517.946
Received: 27.11.2014

Citation: Sh. Amirov, A. I. Kozhanov, “Global Solvability of Initial Boundary-Value Problems for Nonlinear Analogs of the Boussinesq Equation”, Mat. Zametki, 99:2 (2016), 171–180; Math. Notes, 99:2 (2016), 183–191

Citation in format AMSBIB
\Bibitem{AmiKoz16}
\by Sh.~Amirov, A.~I.~Kozhanov
\paper Global Solvability of Initial Boundary-Value Problems for Nonlinear Analogs of the Boussinesq Equation
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 2
\pages 171--180
\mathnet{http://mi.mathnet.ru/mz10617}
\crossref{https://doi.org/10.4213/mzm10617}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3462699}
\elib{https://elibrary.ru/item.asp?id=25707655}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 2
\pages 183--191
\crossref{https://doi.org/10.1134/S0001434616010211}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000373228900021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962385758}


Linking options:
  • http://mi.mathnet.ru/eng/mz10617
  • https://doi.org/10.4213/mzm10617
  • http://mi.mathnet.ru/eng/mz/v99/i2/p171

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Sh. Amirov, M. Anutgan, “Analytical solitary wave solutions for the nonlinear analogues of the Boussinesq and sixth-order modified Boussinesq equations”, J. Appl. Anal. Comput., 7:4 (2017), 1613–1623  crossref  mathscinet  isi  scopus
    2. A. I. Kozhanov, G. V. Namsaraeva, “Lineinye obratnye zadachi dlya odnogo klassa uravnenii sobolevskogo tipa”, Chelyab. fiz.-matem. zhurn., 3:2 (2018), 153–171  mathnet  crossref
    3. A. I. Grigoreva, “Zadachi sopryazheniya dlya nekotorykh analogov uravneniya prodolnykh voln s razryvnym koeffitsientom”, Chelyab. fiz.-matem. zhurn., 3:3 (2018), 276–294  mathnet  crossref  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:376
    Full text:41
    References:82
    First page:93

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021