RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2017, Volume 102, Issue 1, Pages 17–27 (Mi mz10676)  

Generalized Quasi-Isometries on Smooth Riemannian Manifolds

E. S. Afanasjeva

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine

Abstract: The boundary behavior of finitely bi-Lipschitz mappings on smooth Riemannian manifolds is studied.

Keywords: Riemannian manifold, $p$-moduli, lower $Q$-homeomorphisms, finitely bi-Lipschitz homeomorphisms, boundary behavior.

DOI: https://doi.org/10.4213/mzm10676

Full text: PDF file (497 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2017, 102:1, 12–21

Bibliographic databases:

UDC: 517
Received: 04.02.2015
Revised: 11.05.2016

Citation: E. S. Afanasjeva, “Generalized Quasi-Isometries on Smooth Riemannian Manifolds”, Mat. Zametki, 102:1 (2017), 17–27; Math. Notes, 102:1 (2017), 12–21

Citation in format AMSBIB
\Bibitem{Afa17}
\by E.~S.~Afanasjeva
\paper Generalized Quasi-Isometries on Smooth Riemannian Manifolds
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 1
\pages 17--27
\mathnet{http://mi.mathnet.ru/mz10676}
\crossref{https://doi.org/10.4213/mzm10676}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3670206}
\elib{http://elibrary.ru/item.asp?id=29437441}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 1
\pages 12--21
\crossref{https://doi.org/10.1134/S0001434617070021}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000413842800002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032340799}


Linking options:
  • http://mi.mathnet.ru/eng/mz10676
  • https://doi.org/10.4213/mzm10676
  • http://mi.mathnet.ru/eng/mz/v102/i1/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:132
    References:28
    First page:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019