RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 1999, Volume 65, Issue 3, Pages 437–456 (Mi mz1068)  

This article is cited in 9 scientific papers (total in 9 papers)

On the canonical Maslov operator in abstract spaces

O. Yu. Shvedov

M. V. Lomonosov Moscow State University, Faculty of Physics

DOI: https://doi.org/10.4213/mzm1068

Full text: PDF file (294 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 1999, 65:3, 365–380

Bibliographic databases:

UDC: 517
Received: 14.04.1998

Citation: O. Yu. Shvedov, “On the canonical Maslov operator in abstract spaces”, Mat. Zametki, 65:3 (1999), 437–456; Math. Notes, 65:3 (1999), 365–380

Citation in format AMSBIB
\Bibitem{Shv99}
\by O.~Yu.~Shvedov
\paper On the canonical Maslov operator in abstract spaces
\jour Mat. Zametki
\yr 1999
\vol 65
\issue 3
\pages 437--456
\mathnet{http://mi.mathnet.ru/mz1068}
\crossref{https://doi.org/10.4213/mzm1068}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1717520}
\zmath{https://zbmath.org/?q=an:0967.81024}
\transl
\jour Math. Notes
\yr 1999
\vol 65
\issue 3
\pages 365--380
\crossref{https://doi.org/10.1007/BF02675080}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000083203700013}


Linking options:
  • http://mi.mathnet.ru/eng/mz1068
  • https://doi.org/10.4213/mzm1068
  • http://mi.mathnet.ru/eng/mz/v65/i3/p437

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. P. Maslov, O. Yu. Shvedov, “The Complex-Germ Method for Statistical Mechanics of Model Systems”, Proc. Steklov Inst. Math., 228 (2000), 234–251  mathnet  mathscinet  zmath
    2. Shvedov, OY, “Renormalization of Poincaré transformations in Hamiltonian semiclassical field theory”, Journal of Mathematical Physics, 43:4 (2002), 1809  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    3. Shvedov, OY, “Semiclassical symmetries”, Annals of Physics, 296:1 (2002), 51  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    4. O. Yu. Shvedov, “On Quasiclassical Field Theories Invariant with Respect to a Lie Group”, Math. Notes, 73:3 (2003), 447–454  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. O. Yu. Shvedov, “Maslov Complex Germ Method for Systems with First-Class Constraints”, Theoret. and Math. Phys., 136:3 (2003), 1258–1272  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. Shvedov, OY, “Approximations for strongly singular evolution equations”, Journal of Functional Analysis, 210:2 (2004), 259  crossref  mathscinet  zmath  isi  scopus  scopus
    7. O. Yu. Shvedov, “Relativistically Covariant Quantum Field Theory of the Maslov Complex Germ”, Theoret. and Math. Phys., 144:3 (2005), 1296–1314  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    8. Shvedov O.Yu., “Symmetries of Semiclassical Gauge Systems”, Int. J. Geom. Methods Mod. Phys., 12:10 (2015), 1550110  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    9. O. Yu. Shvedov, “Maslov complex germ method for systems with second-class constraints”, Theoret. and Math. Phys., 186:3 (2016), 365–373  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:164
    Full text:55
    References:10
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019