RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2017, Volume 102, Issue 1, Pages 109–124 (Mi mz10740)  

On a Class of Totally Topologically Transitive Skew Products Defined on Cells in $\mathbb R^n$, ${n\ge 2}$

A. S. Fil'chenkov

Lobachevski State University of Nizhni Novgorod

Abstract: We obtain sufficient conditions for total topological transitivity (transitivity of all iterations) for a class of $C^3$ skew products defined on cells in $\mathbb R^n$, $n\ge 2$.

Keywords: discrete dynamical system, skew product, topological transitivity.

DOI: https://doi.org/10.4213/mzm10740

Full text: PDF file (613 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2017, 102:1, 92–104

Bibliographic databases:

UDC: 517.987.5
Received: 26.03.2015
Revised: 29.12.2016

Citation: A. S. Fil'chenkov, “On a Class of Totally Topologically Transitive Skew Products Defined on Cells in $\mathbb R^n$, ${n\ge 2}$”, Mat. Zametki, 102:1 (2017), 109–124; Math. Notes, 102:1 (2017), 92–104

Citation in format AMSBIB
\Bibitem{Fil17}
\by A.~S.~Fil'chenkov
\paper On a Class of Totally Topologically Transitive Skew Products Defined on Cells in~$\mathbb R^n$, ${n\ge 2}$
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 1
\pages 109--124
\mathnet{http://mi.mathnet.ru/mz10740}
\crossref{https://doi.org/10.4213/mzm10740}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3670214}
\elib{http://elibrary.ru/item.asp?id=29437457}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 1
\pages 92--104
\crossref{https://doi.org/10.1134/S0001434617070100}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000413842800010}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032335674}


Linking options:
  • http://mi.mathnet.ru/eng/mz10740
  • https://doi.org/10.4213/mzm10740
  • http://mi.mathnet.ru/eng/mz/v102/i1/p109

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Математические заметки Mathematical Notes
    Number of views:
    This page:127
    Full text:3
    References:22
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020