RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2016, Volume 99, Issue 2, Pages 262–277 (Mi mz10854)  

This article is cited in 5 scientific papers (total in 5 papers)

On the Deficiency Index of the Vector-Valued Sturm–Liouville Operator

K. A. Mirzoeva, T. A. Safonovab

a Lomonosov Moscow State University
b Nothern (Arctic) Federal University named after M. V. Lomonosov, Arkhangelsk

Abstract: Let $\mathbb R_+:=[0,+\infty)$, and let the matrix functions $P$, $Q$, and $R$ of order $n$, $n\in\mathbb N$, defined on the semiaxis $\mathbb R_+$ be such that $P(x)$ is a nondegenerate matrix, $P(x)$ and $Q(x)$ are Hermitian matrices for $x\in\mathbb R_+$ and the elements of the matrix functions $P^{-1}$, $Q$, and $R$ are measurable on $\mathbb R_+$ and summable on each of its closed finite subintervals. We study the operators generated in the space $\mathscr L^2_n(\mathbb R_+)$ by formal expressions of the form
$$ l[f]=-(P(f'-Rf))'-R^*P(f'-Rf)+Qf $$
and, as a particular case, operators generated by expressions of the form
$$ l[f]=-(P_0f')'+i((Q_0f)'+Q_0f')+P'_1f, $$
where everywhere the derivatives are understood in the sense of distributions and $P_0$, $Q_0$, and $P_1$ are Hermitian matrix functions of order $n$ with Lebesgue measurable elements such that $P^{-1}_0$ exists and $\|P_0\|,\|P^{-1}_0\|, \|P^{-1}_0\|\|P_1\|^2,\|P^{-1}_0\|\|Q_0\|^2 \in \mathscr L^1_{\mathrm{loc}}(\mathbb R_+)$.
The main goal in this paper is to study of the deficiency index of the minimal operator $L_0$ generated by expression $l[f]$ in $\mathscr L^2_n(\mathbb R_+)$ in terms of the matrix functions $P$, $Q$, and $R$ ($P_0$, $Q_0$, and $P_1$). The obtained results are applied to differential operators generated by expressions of the form
$$ l[f]=-f"+\sum_{k=1}^{+\infty}\mathscr H_k\delta(x-x_{k})f, $$
where $x_k$, $k=1,2,…$, is an increasing sequence of positive numbers, with $\lim_{k\to +\infty}x_k=+\infty$, $\mathscr H_k$ is a number Hermitian matrix of order $n$, and $\delta(x)$ is the Dirac $\delta$-function.

Keywords: Sturm–Liouville operator, deficiency index, Hermitian matrix-function, Jacobi matrix, Cauchy–Bunyakovskii inequality, quasiderivative, quasidifferential equation.

Funding Agency Grant Number
Russian Foundation for Basic Research 14-11-00754
14-01-31136-мол а
14-01-00349
15-31-50259
Ministry of Education and Science of the Russian Federation МК-3941.2015.1


DOI: https://doi.org/10.4213/mzm10854

Full text: PDF file (580 kB)
References: PDF file   HTML file

English version:
Mathematical Notes, 2016, 99:2, 290–303

Bibliographic databases:

UDC: 517.983.35+517.929.2
Received: 26.07.2015

Citation: K. A. Mirzoev, T. A. Safonova, “On the Deficiency Index of the Vector-Valued Sturm–Liouville Operator”, Mat. Zametki, 99:2 (2016), 262–277; Math. Notes, 99:2 (2016), 290–303

Citation in format AMSBIB
\Bibitem{MirSaf16}
\by K.~A.~Mirzoev, T.~A.~Safonova
\paper On the Deficiency Index of the Vector-Valued Sturm--Liouville Operator
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 2
\pages 262--277
\mathnet{http://mi.mathnet.ru/mz10854}
\crossref{https://doi.org/10.4213/mzm10854}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3462706}
\elib{http://elibrary.ru/item.asp?id=25707665}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 2
\pages 290--303
\crossref{https://doi.org/10.1134/S0001434616010314}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000373228900031}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962427806}


Linking options:
  • http://mi.mathnet.ru/eng/mz10854
  • https://doi.org/10.4213/mzm10854
  • http://mi.mathnet.ru/eng/mz/v99/i2/p262

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. N. Braeutigam, “Limit-point criteria for the matrix Sturm-Liouville operator and its powers”, Opuscula Math., 37:1 (2017), 5–19  crossref  mathscinet  zmath  isi  elib  scopus
    2. A. Konstantinov, O. Konstantinov, “Sturm-Liouville operators with matrix distributional coefficients”, Methods Funct. Anal. Topol., 23:1 (2017), 51–59  mathscinet  zmath  isi
    3. V. S. Budyka, M. M. Malamud, A. Posilicano, “To the spectral theory of one-dimensional matrix Dirac operators with point matrix interactions”, Dokl. Math., 97:2 (2018), 115–121  mathnet  crossref  crossref  zmath  isi  elib  scopus
    4. K. A. Mirzoev, I. N. Broitigam, “O defektnykh chislakh operatorov, porozhdennykh yakobievymi matritsami s operatornymi elementami”, Algebra i analiz, 30:4 (2018), 1–26  mathnet
    5. I. N. Braeutigam, K. A. Mirzoev, “Asymptotics of Solutions of Matrix Differential Equations with Nonsmooth Coefficients”, Math. Notes, 104:1 (2018), 150–155  mathnet  crossref  crossref  isi  elib
  • Математические заметки Mathematical Notes
    Number of views:
    This page:299
    Full text:14
    References:78
    First page:63

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020