RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mat. Zametki, 2017, Volume 101, Issue 1, Pages 20–30 (Mi mz10881)  

This article is cited in 3 scientific papers (total in 3 papers)

Periodic Solutions in the Plane of Systems of Second-Order Hyperbolic Equations

A. T. Asanova

Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan

Abstract: A periodic problem in the plane for the system of second-order hyperbolic equations with mixed derivatives is considered. Sufficient conditions for the existence of a unique periodic solution in the plane of the problem under consideration in terms of the initial data are established.

Keywords: hyperbolic equation, periodic solution, algorithm, solvability.

Funding Agency Grant Number
Ministry of Education and Science of the Republic of Kazakhstan 0822/ГФ 4


DOI: https://doi.org/10.4213/mzm10881

Full text: PDF file (473 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Mathematical Notes, 2017, 101:1, 39–47

Bibliographic databases:

UDC: 517.956
Received: 07.07.2015
Revised: 18.02.2016

Citation: A. T. Asanova, “Periodic Solutions in the Plane of Systems of Second-Order Hyperbolic Equations”, Mat. Zametki, 101:1 (2017), 20–30; Math. Notes, 101:1 (2017), 39–47

Citation in format AMSBIB
\Bibitem{Ass17}
\by A.~T.~Asanova
\paper Periodic Solutions in the Plane of Systems of Second-Order Hyperbolic Equations
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 1
\pages 20--30
\mathnet{http://mi.mathnet.ru/mz10881}
\crossref{https://doi.org/10.4213/mzm10881}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3598748}
\elib{http://elibrary.ru/item.asp?id=28172122}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 1
\pages 39--47
\crossref{https://doi.org/10.1134/S0001434617010047}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000396392700004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015612779}


Linking options:
  • http://mi.mathnet.ru/eng/mz10881
  • https://doi.org/10.4213/mzm10881
  • http://mi.mathnet.ru/eng/mz/v101/i1/p20

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. T. Assanova, B. Zh. Alikhanova, K. Zh. Nazarova, “Well-posedness of a nonlocal problem with integral conditions for third order system of the partial differential equations”, News Natl. Acad. Sci. Rep. Kazakhstan Ser. Phys.-Math., 5:321 (2018), 33–41  crossref  isi
    2. Assanova A.T., Boichuk A.A., Tokmurzin Z.S., “On the Initial-Boundary Value Problem For System of the Partial Differential Equations of Fourth Order”, News Natl. Acad. Sci. Rep. Kazakhstan-Ser. Phys.-Math., 1:323 (2019), 14–21  crossref  isi
    3. Assanova A.T., “On the Theory of Nonlocal Problems With Integral Conditions For Systems of Equations of Hyperbolic Type”, Ukr. Math. J., 70:10 (2019), 1514–1525  crossref  isi
  • Математические заметки Mathematical Notes
    Number of views:
    This page:236
    References:53
    First page:44

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020